{"title":"基于全局和局部特征提取的跌倒检测算法","authors":"Bin Li , Jiangjiao Li , Peng Wang","doi":"10.1016/j.patrec.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>Falls have become one of the main causes of injury and death among the elderly. A high-accuracy fall detection method can effectively detect falls in the elderly, thereby reducing the probability of injury and mortality. This paper proposes a fall detection algorithm based on global and local feature extraction. Specifically, we design a dual-stream network, with one branch composed of a convolutional neural network and a regional attention module for extracting local features from images. The other branch consists of an improved Transformer for extracting global features from images. The local and global features are then fused using a feature fusion module for classification, enabling fall detection. Experimental results show that the proposed approach achieves accuracies of 99.55% and 99.75% when tested with UP-Fall Detection Dataset and Le2i Fall Detection Dataset.</p></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"185 ","pages":"Pages 31-37"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fall detection algorithm based on global and local feature extraction\",\"authors\":\"Bin Li , Jiangjiao Li , Peng Wang\",\"doi\":\"10.1016/j.patrec.2024.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Falls have become one of the main causes of injury and death among the elderly. A high-accuracy fall detection method can effectively detect falls in the elderly, thereby reducing the probability of injury and mortality. This paper proposes a fall detection algorithm based on global and local feature extraction. Specifically, we design a dual-stream network, with one branch composed of a convolutional neural network and a regional attention module for extracting local features from images. The other branch consists of an improved Transformer for extracting global features from images. The local and global features are then fused using a feature fusion module for classification, enabling fall detection. Experimental results show that the proposed approach achieves accuracies of 99.55% and 99.75% when tested with UP-Fall Detection Dataset and Le2i Fall Detection Dataset.</p></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"185 \",\"pages\":\"Pages 31-37\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016786552400206X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016786552400206X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Fall detection algorithm based on global and local feature extraction
Falls have become one of the main causes of injury and death among the elderly. A high-accuracy fall detection method can effectively detect falls in the elderly, thereby reducing the probability of injury and mortality. This paper proposes a fall detection algorithm based on global and local feature extraction. Specifically, we design a dual-stream network, with one branch composed of a convolutional neural network and a regional attention module for extracting local features from images. The other branch consists of an improved Transformer for extracting global features from images. The local and global features are then fused using a feature fusion module for classification, enabling fall detection. Experimental results show that the proposed approach achieves accuracies of 99.55% and 99.75% when tested with UP-Fall Detection Dataset and Le2i Fall Detection Dataset.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.