{"title":"学习稀疏特征表示,实现夜间图像质量盲评估","authors":"Maryam Karimi , Mansour Nejati","doi":"10.1016/j.image.2024.117167","DOIUrl":null,"url":null,"abstract":"<div><p>Capturing Night-Time Images (NTIs) with high-quality is quite challenging for consumer photography and several practical applications. Thus, addressing the quality assessment of night-time images is urgently needed. Since there is no available reference image for such images, Night-Time image Quality Assessment (NTQA) should be done blindly. Although Blind natural Image Quality Assessment (BIQA) has attracted a great deal of attention for a long time, very little work has been done in the field of NTQA. Due to the capturing conditions, NTIs suffer from various complex authentic distortions that make it a challenging field of research. Therefore, previous BIQA methods, do not provide sufficient correlation with subjective scores in the case of NTIs and special methods of NTQA should be developed. In this paper we conduct an unsupervised feature learning method for blind quality assessment of night-time images. The features are the sparse representation over the data-adaptive dictionaries learned on the image exposure and gradient magnitude maps. Having these features, an ensemble regression model trained using least squares gradient boosting scheme predicts high correlated objective scores on the standard datasets.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"128 ","pages":"Article 117167"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning sparse feature representation for blind quality assessment of night-time images\",\"authors\":\"Maryam Karimi , Mansour Nejati\",\"doi\":\"10.1016/j.image.2024.117167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Capturing Night-Time Images (NTIs) with high-quality is quite challenging for consumer photography and several practical applications. Thus, addressing the quality assessment of night-time images is urgently needed. Since there is no available reference image for such images, Night-Time image Quality Assessment (NTQA) should be done blindly. Although Blind natural Image Quality Assessment (BIQA) has attracted a great deal of attention for a long time, very little work has been done in the field of NTQA. Due to the capturing conditions, NTIs suffer from various complex authentic distortions that make it a challenging field of research. Therefore, previous BIQA methods, do not provide sufficient correlation with subjective scores in the case of NTIs and special methods of NTQA should be developed. In this paper we conduct an unsupervised feature learning method for blind quality assessment of night-time images. The features are the sparse representation over the data-adaptive dictionaries learned on the image exposure and gradient magnitude maps. Having these features, an ensemble regression model trained using least squares gradient boosting scheme predicts high correlated objective scores on the standard datasets.</p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"128 \",\"pages\":\"Article 117167\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596524000687\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000687","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Learning sparse feature representation for blind quality assessment of night-time images
Capturing Night-Time Images (NTIs) with high-quality is quite challenging for consumer photography and several practical applications. Thus, addressing the quality assessment of night-time images is urgently needed. Since there is no available reference image for such images, Night-Time image Quality Assessment (NTQA) should be done blindly. Although Blind natural Image Quality Assessment (BIQA) has attracted a great deal of attention for a long time, very little work has been done in the field of NTQA. Due to the capturing conditions, NTIs suffer from various complex authentic distortions that make it a challenging field of research. Therefore, previous BIQA methods, do not provide sufficient correlation with subjective scores in the case of NTIs and special methods of NTQA should be developed. In this paper we conduct an unsupervised feature learning method for blind quality assessment of night-time images. The features are the sparse representation over the data-adaptive dictionaries learned on the image exposure and gradient magnitude maps. Having these features, an ensemble regression model trained using least squares gradient boosting scheme predicts high correlated objective scores on the standard datasets.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.