全息图学综合分析揭示肩胛脂肪在苏尼特羊产热适应中的作用

IF 2.2 2区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Comparative Biochemistry and Physiology D-Genomics & Proteomics Pub Date : 2024-07-14 DOI:10.1016/j.cbd.2024.101292
Longwei Chang , Fanhua Meng , Boran Jiao, Tong Zhou, Rina Su, Chunxiao Zhu, Yi Wu, Yu Ling, Shenyuan Wang, Kaifeng Wu, Dong Zhang, Junwei Cao
{"title":"全息图学综合分析揭示肩胛脂肪在苏尼特羊产热适应中的作用","authors":"Longwei Chang ,&nbsp;Fanhua Meng ,&nbsp;Boran Jiao,&nbsp;Tong Zhou,&nbsp;Rina Su,&nbsp;Chunxiao Zhu,&nbsp;Yi Wu,&nbsp;Yu Ling,&nbsp;Shenyuan Wang,&nbsp;Kaifeng Wu,&nbsp;Dong Zhang,&nbsp;Junwei Cao","doi":"10.1016/j.cbd.2024.101292","DOIUrl":null,"url":null,"abstract":"<div><p>Inhabiting some of the world's most inhospitable climatic regions, the Sunite Mongolian sheep generates average temperatures as low as 4.3 °C and a minimum temperature of −38.8 °C; in these environments, they make essential cold adaptations. In this regard, scapular fat tissues from Mongolian sheep were collected both in winter and summer for transcriptomic and proteomic analyses to identify genes related to adaptive thermogenesis. In the transcriptome analysis, 588 differentially expressed genes were identified to participate in smooth muscle activity and fat metabolism, as well as in nutrient regulation. There were 343 upregulated and 245 downregulated genes. GO and KEGG pathway analyses on these genes revealed their participation in regulating smooth muscle activity, metabolism of fats, and nutrients. Proteomic analysis showed the differential expression of 925 proteins: among them, there are 432 up- and 493 down-expressed proteins. These proteins are mainly involved in oxidative phosphorylation, respiratory chain complex assembly, and ATP production by electron transport. Furthermore, using both sets at a more detailed level of analysis revealed over-representation in gene ontology categories related to hormone signaling, metabolism of lipids, the pentose phosphate pathway, the TCA cycle, and especially the process of oxidative phosphorylation. The identified essential genes and proteins were further validated by quantitative real-time polymerase chain reaction and Western blotting, respectively; key metabolic network constriction was constructed. The present study emphasized the critical role of lipid turnover in scapular fat for thermogenic adaptation in Sunite sheep.</p></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated analysis of omics reveals the role of scapular fat in thermogenesis adaptation in sunite sheep\",\"authors\":\"Longwei Chang ,&nbsp;Fanhua Meng ,&nbsp;Boran Jiao,&nbsp;Tong Zhou,&nbsp;Rina Su,&nbsp;Chunxiao Zhu,&nbsp;Yi Wu,&nbsp;Yu Ling,&nbsp;Shenyuan Wang,&nbsp;Kaifeng Wu,&nbsp;Dong Zhang,&nbsp;Junwei Cao\",\"doi\":\"10.1016/j.cbd.2024.101292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inhabiting some of the world's most inhospitable climatic regions, the Sunite Mongolian sheep generates average temperatures as low as 4.3 °C and a minimum temperature of −38.8 °C; in these environments, they make essential cold adaptations. In this regard, scapular fat tissues from Mongolian sheep were collected both in winter and summer for transcriptomic and proteomic analyses to identify genes related to adaptive thermogenesis. In the transcriptome analysis, 588 differentially expressed genes were identified to participate in smooth muscle activity and fat metabolism, as well as in nutrient regulation. There were 343 upregulated and 245 downregulated genes. GO and KEGG pathway analyses on these genes revealed their participation in regulating smooth muscle activity, metabolism of fats, and nutrients. Proteomic analysis showed the differential expression of 925 proteins: among them, there are 432 up- and 493 down-expressed proteins. These proteins are mainly involved in oxidative phosphorylation, respiratory chain complex assembly, and ATP production by electron transport. Furthermore, using both sets at a more detailed level of analysis revealed over-representation in gene ontology categories related to hormone signaling, metabolism of lipids, the pentose phosphate pathway, the TCA cycle, and especially the process of oxidative phosphorylation. The identified essential genes and proteins were further validated by quantitative real-time polymerase chain reaction and Western blotting, respectively; key metabolic network constriction was constructed. The present study emphasized the critical role of lipid turnover in scapular fat for thermogenic adaptation in Sunite sheep.</p></div>\",\"PeriodicalId\":55235,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology D-Genomics & Proteomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology D-Genomics & Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1744117X24001059\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X24001059","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

苏尼特蒙古绵羊栖息在世界上一些气候最恶劣的地区,平均气温低至 4.3 °C,最低气温为 -38.8 °C;在这种环境下,蒙古绵羊对寒冷有必要的适应性。为此,研究人员采集了蒙古绵羊冬季和夏季的肩胛脂肪组织,进行转录组和蛋白质组分析,以确定与适应性产热相关的基因。在转录组分析中,发现了588个参与平滑肌活动和脂肪代谢以及营养调节的差异表达基因。其中有 343 个上调基因和 245 个下调基因。对这些基因进行的 GO 和 KEGG 通路分析表明,它们参与了平滑肌活动、脂肪代谢和营养物质的调节。蛋白质组分析表明,925 个蛋白质的表达存在差异:其中,432 个蛋白质表达量增加,493 个蛋白质表达量减少。这些蛋白质主要参与氧化磷酸化、呼吸链复合物组装和电子传递产生 ATP。此外,利用这两组数据进行更详细的分析发现,与激素信号转导、脂质代谢、磷酸戊糖途径、TCA 循环,特别是氧化磷酸化过程有关的基因本体类别的代表性过高。分别通过实时定量聚合酶链式反应和 Western 印迹法进一步验证了所确定的重要基因和蛋白质,并构建了关键代谢网络收缩。本研究强调了苏尼特羊肩胛脂肪中的脂质周转对热生适应的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated analysis of omics reveals the role of scapular fat in thermogenesis adaptation in sunite sheep

Inhabiting some of the world's most inhospitable climatic regions, the Sunite Mongolian sheep generates average temperatures as low as 4.3 °C and a minimum temperature of −38.8 °C; in these environments, they make essential cold adaptations. In this regard, scapular fat tissues from Mongolian sheep were collected both in winter and summer for transcriptomic and proteomic analyses to identify genes related to adaptive thermogenesis. In the transcriptome analysis, 588 differentially expressed genes were identified to participate in smooth muscle activity and fat metabolism, as well as in nutrient regulation. There were 343 upregulated and 245 downregulated genes. GO and KEGG pathway analyses on these genes revealed their participation in regulating smooth muscle activity, metabolism of fats, and nutrients. Proteomic analysis showed the differential expression of 925 proteins: among them, there are 432 up- and 493 down-expressed proteins. These proteins are mainly involved in oxidative phosphorylation, respiratory chain complex assembly, and ATP production by electron transport. Furthermore, using both sets at a more detailed level of analysis revealed over-representation in gene ontology categories related to hormone signaling, metabolism of lipids, the pentose phosphate pathway, the TCA cycle, and especially the process of oxidative phosphorylation. The identified essential genes and proteins were further validated by quantitative real-time polymerase chain reaction and Western blotting, respectively; key metabolic network constriction was constructed. The present study emphasized the critical role of lipid turnover in scapular fat for thermogenic adaptation in Sunite sheep.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
3.30%
发文量
69
审稿时长
33 days
期刊介绍: Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology. Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.
期刊最新文献
Construction and integrative analysis of miRNA-mRNA response to salinity stress in Oreochromis mossambicus cells Revealing the adaptation mechanism of different color morphs of sea cucumber Apostichopus japonicus to light intensities from the perspective of metabolomics Transcriptome analysis uncovers the expression of genes associated with growth in the gills and muscles of white shrimp (Litopenaeus vannamei) with different growth rates Effects of high-protein feeds on growth, free amino acid metabolism and protein metabolism-related genes in larvae and juveniles of rice flower carp (Procypris merus) Comparative analysis of intestinal structure, enzyme activity, intestinal microbiota and gene expression in different segments of pufferfish (Takifugu Obscurus)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1