Ahmad Jawad Sabir , Lijun Rong , Christopher C. Broder , Moushimi Amaya
{"title":"雪松病毒生物学及其作为高致病性鸡病毒替代物的应用","authors":"Ahmad Jawad Sabir , Lijun Rong , Christopher C. Broder , Moushimi Amaya","doi":"10.1016/j.cellin.2024.100181","DOIUrl":null,"url":null,"abstract":"<div><p>Nipah Virus (NiV) and Hendra Virus (HeV), are the prototype species of the genus <em>Henipavirus</em> and are highly pathogenic agents capable of causing fatal diseases in both animals and humans. Both NiV and HeV are classified as biosafety level-4 (BSL-4) restricted pathogens and remain the only henipaviruses within the genus known to cause systemic, severe respiratory and encephalitic henipaviral disease, and represent substantial transboundary threats. There are no approved prophylactic or therapeutic treatments for human henipavirus infections, and the World Health Organization acknowledges them as priority pathogens needing urgent research. The discovery of Cedar virus (CedV), the only recognized non-pathogenic henipavirus, has provided a number of unique opportunities to study henipavirus and host interactions and also facilitate countermeasure development research at lower BSL-2 containment. This review will highlight the unique aspects of CedV biology and how it has been exploited as a model for developing therapeutic strategies against more virulent henipavirus species.</p></div>","PeriodicalId":72541,"journal":{"name":"Cell insight","volume":"3 4","pages":"Article 100181"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772892724000361/pdfft?md5=0595314a62733ce59358b6e4a7a0c2ab&pid=1-s2.0-S2772892724000361-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Cedar virus biology and its applications as a surrogate for highly pathogenic henipaviruses\",\"authors\":\"Ahmad Jawad Sabir , Lijun Rong , Christopher C. Broder , Moushimi Amaya\",\"doi\":\"10.1016/j.cellin.2024.100181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nipah Virus (NiV) and Hendra Virus (HeV), are the prototype species of the genus <em>Henipavirus</em> and are highly pathogenic agents capable of causing fatal diseases in both animals and humans. Both NiV and HeV are classified as biosafety level-4 (BSL-4) restricted pathogens and remain the only henipaviruses within the genus known to cause systemic, severe respiratory and encephalitic henipaviral disease, and represent substantial transboundary threats. There are no approved prophylactic or therapeutic treatments for human henipavirus infections, and the World Health Organization acknowledges them as priority pathogens needing urgent research. The discovery of Cedar virus (CedV), the only recognized non-pathogenic henipavirus, has provided a number of unique opportunities to study henipavirus and host interactions and also facilitate countermeasure development research at lower BSL-2 containment. This review will highlight the unique aspects of CedV biology and how it has been exploited as a model for developing therapeutic strategies against more virulent henipavirus species.</p></div>\",\"PeriodicalId\":72541,\"journal\":{\"name\":\"Cell insight\",\"volume\":\"3 4\",\"pages\":\"Article 100181\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772892724000361/pdfft?md5=0595314a62733ce59358b6e4a7a0c2ab&pid=1-s2.0-S2772892724000361-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell insight\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772892724000361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell insight","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772892724000361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
尼帕病毒(Nipah Virus,NiV)和亨德拉病毒(Hendra Virus,HeV)是鸡病毒属(Henipavirus)的原型种,是能够导致动物和人类致命疾病的高致病性病原体。NiV 和 HeV 都被列为生物安全等级-4(BSL-4)限制性病原体,是该属中唯一已知可引起全身性、严重呼吸道和脑炎性鸡病毒病的鸡病毒,具有严重的跨境威胁。目前还没有获得批准的预防或治疗人类鸡病毒感染的方法,世界卫生组织认为鸡病毒是急需研究的重点病原体。西达病毒(CedV)是唯一一种公认的非致病性鸡病毒,它的发现为研究鸡病毒与宿主的相互作用提供了许多独特的机会,同时也促进了在较低的 BSL-2 封闭条件下的对策开发研究。本综述将重点介绍 CedV 生物学的独特方面,以及如何将其作为针对毒性更强的鸡病毒种类开发治疗策略的模型。
Cedar virus biology and its applications as a surrogate for highly pathogenic henipaviruses
Nipah Virus (NiV) and Hendra Virus (HeV), are the prototype species of the genus Henipavirus and are highly pathogenic agents capable of causing fatal diseases in both animals and humans. Both NiV and HeV are classified as biosafety level-4 (BSL-4) restricted pathogens and remain the only henipaviruses within the genus known to cause systemic, severe respiratory and encephalitic henipaviral disease, and represent substantial transboundary threats. There are no approved prophylactic or therapeutic treatments for human henipavirus infections, and the World Health Organization acknowledges them as priority pathogens needing urgent research. The discovery of Cedar virus (CedV), the only recognized non-pathogenic henipavirus, has provided a number of unique opportunities to study henipavirus and host interactions and also facilitate countermeasure development research at lower BSL-2 containment. This review will highlight the unique aspects of CedV biology and how it has been exploited as a model for developing therapeutic strategies against more virulent henipavirus species.