Fei Fang, Guangyao Gao, Qianyi Wang, Qianjie Wang, Liangliang Sun
{"title":"将 SDS-PAGE 与毛细管区带电泳-串联质谱相结合,对完整的组蛋白蛋白形式进行高分辨率自上而下的蛋白质组学分析。","authors":"Fei Fang, Guangyao Gao, Qianyi Wang, Qianjie Wang, Liangliang Sun","doi":"10.1002/pmic.202300650","DOIUrl":null,"url":null,"abstract":"<p>Mass spectrometry (MS)-based top-down proteomics (TDP) analysis of histone proteoforms provides critical information about combinatorial post-translational modifications (PTMs), which is vital for pursuing a better understanding of epigenetic regulation of gene expression. It requires high-resolution separations of histone proteoforms before MS and tandem MS (MS/MS) analysis. In this work, for the first time, we combined SDS-PAGE-based protein fractionation (passively eluting proteins from polyacrylamide gels as intact species for mass spectrometry, PEPPI-MS) with capillary zone electrophoresis (CZE)-MS/MS for high-resolution characterization of histone proteoforms. We systematically studied the histone proteoform extraction from SDS-PAGE gel and follow-up cleanup as well as CZE-MS/MS, to determine an optimal procedure. The optimal procedure showed reproducible and high-resolution separation and characterization of histone proteoforms. SDS-PAGE separated histone proteins (H1, H2, H3, and H4) based on their molecular weight and CZE provided additional separations of proteoforms of each histone protein based on their electrophoretic mobility, which was affected by PTMs, for example, acetylation and phosphorylation. Using the technique, we identified over 200 histone proteoforms from a commercial calf thymus histone sample with good reproducibility. The orthogonal and high-resolution separations of SDS-PAGE and CZE made our technique attractive for the delineation of histone proteoforms extracted from complex biological systems.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":"24 17","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pmic.202300650","citationCount":"0","resultStr":"{\"title\":\"Combining SDS-PAGE to capillary zone electrophoresis-tandem mass spectrometry for high-resolution top-down proteomics analysis of intact histone proteoforms\",\"authors\":\"Fei Fang, Guangyao Gao, Qianyi Wang, Qianjie Wang, Liangliang Sun\",\"doi\":\"10.1002/pmic.202300650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mass spectrometry (MS)-based top-down proteomics (TDP) analysis of histone proteoforms provides critical information about combinatorial post-translational modifications (PTMs), which is vital for pursuing a better understanding of epigenetic regulation of gene expression. It requires high-resolution separations of histone proteoforms before MS and tandem MS (MS/MS) analysis. In this work, for the first time, we combined SDS-PAGE-based protein fractionation (passively eluting proteins from polyacrylamide gels as intact species for mass spectrometry, PEPPI-MS) with capillary zone electrophoresis (CZE)-MS/MS for high-resolution characterization of histone proteoforms. We systematically studied the histone proteoform extraction from SDS-PAGE gel and follow-up cleanup as well as CZE-MS/MS, to determine an optimal procedure. The optimal procedure showed reproducible and high-resolution separation and characterization of histone proteoforms. SDS-PAGE separated histone proteins (H1, H2, H3, and H4) based on their molecular weight and CZE provided additional separations of proteoforms of each histone protein based on their electrophoretic mobility, which was affected by PTMs, for example, acetylation and phosphorylation. Using the technique, we identified over 200 histone proteoforms from a commercial calf thymus histone sample with good reproducibility. The orthogonal and high-resolution separations of SDS-PAGE and CZE made our technique attractive for the delineation of histone proteoforms extracted from complex biological systems.</p>\",\"PeriodicalId\":224,\"journal\":{\"name\":\"Proteomics\",\"volume\":\"24 17\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pmic.202300650\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pmic.202300650\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pmic.202300650","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Combining SDS-PAGE to capillary zone electrophoresis-tandem mass spectrometry for high-resolution top-down proteomics analysis of intact histone proteoforms
Mass spectrometry (MS)-based top-down proteomics (TDP) analysis of histone proteoforms provides critical information about combinatorial post-translational modifications (PTMs), which is vital for pursuing a better understanding of epigenetic regulation of gene expression. It requires high-resolution separations of histone proteoforms before MS and tandem MS (MS/MS) analysis. In this work, for the first time, we combined SDS-PAGE-based protein fractionation (passively eluting proteins from polyacrylamide gels as intact species for mass spectrometry, PEPPI-MS) with capillary zone electrophoresis (CZE)-MS/MS for high-resolution characterization of histone proteoforms. We systematically studied the histone proteoform extraction from SDS-PAGE gel and follow-up cleanup as well as CZE-MS/MS, to determine an optimal procedure. The optimal procedure showed reproducible and high-resolution separation and characterization of histone proteoforms. SDS-PAGE separated histone proteins (H1, H2, H3, and H4) based on their molecular weight and CZE provided additional separations of proteoforms of each histone protein based on their electrophoretic mobility, which was affected by PTMs, for example, acetylation and phosphorylation. Using the technique, we identified over 200 histone proteoforms from a commercial calf thymus histone sample with good reproducibility. The orthogonal and high-resolution separations of SDS-PAGE and CZE made our technique attractive for the delineation of histone proteoforms extracted from complex biological systems.
期刊介绍:
PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.