用综合功能基因组学方法揭示生物机制。

IF 3.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecules and Cells Pub Date : 2024-08-01 DOI:10.1016/j.mocell.2024.100092
{"title":"用综合功能基因组学方法揭示生物机制。","authors":"","doi":"10.1016/j.mocell.2024.100092","DOIUrl":null,"url":null,"abstract":"<div><p>Reverse genetics offers precise functional insights into genes through the targeted manipulation of gene expression followed by phenotypic assessment. While these approaches have proven effective in model organisms such as <em>Saccharomyces cerevisiae</em>, large-scale genetic manipulations in human cells were historically unfeasible due to methodological limitations. However, recent advancements in functional genomics, particularly clustered regularly interspaced short palindromic repeats (CRISPR)-based screening technologies and next-generation sequencing platforms, have enabled pooled screening technologies that allow massively parallel, unbiased assessments of biological phenomena in human cells. This review provides a comprehensive overview of cutting-edge functional genomic screening technologies applicable to human cells, ranging from short hairpin RNA screens to modern CRISPR screens. Additionally, we explore the integration of CRISPR platforms with single-cell approaches to monitor gene expression, chromatin accessibility, epigenetic regulation, and chromatin architecture following genetic perturbations at the omics level. By offering an in-depth understanding of these genomic screening methods, this review aims to provide insights into more targeted and effective strategies for genomic research and personalized medicine.</p></div>","PeriodicalId":18795,"journal":{"name":"Molecules and Cells","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1016847824001171/pdfft?md5=60d1edbaebce3210f5921cb294e1124e&pid=1-s2.0-S1016847824001171-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Unlocking biological mechanisms with integrative functional genomics approaches\",\"authors\":\"\",\"doi\":\"10.1016/j.mocell.2024.100092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reverse genetics offers precise functional insights into genes through the targeted manipulation of gene expression followed by phenotypic assessment. While these approaches have proven effective in model organisms such as <em>Saccharomyces cerevisiae</em>, large-scale genetic manipulations in human cells were historically unfeasible due to methodological limitations. However, recent advancements in functional genomics, particularly clustered regularly interspaced short palindromic repeats (CRISPR)-based screening technologies and next-generation sequencing platforms, have enabled pooled screening technologies that allow massively parallel, unbiased assessments of biological phenomena in human cells. This review provides a comprehensive overview of cutting-edge functional genomic screening technologies applicable to human cells, ranging from short hairpin RNA screens to modern CRISPR screens. Additionally, we explore the integration of CRISPR platforms with single-cell approaches to monitor gene expression, chromatin accessibility, epigenetic regulation, and chromatin architecture following genetic perturbations at the omics level. By offering an in-depth understanding of these genomic screening methods, this review aims to provide insights into more targeted and effective strategies for genomic research and personalized medicine.</p></div>\",\"PeriodicalId\":18795,\"journal\":{\"name\":\"Molecules and Cells\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1016847824001171/pdfft?md5=60d1edbaebce3210f5921cb294e1124e&pid=1-s2.0-S1016847824001171-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules and Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1016847824001171\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules and Cells","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1016847824001171","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

反向遗传学通过对基因表达进行有针对性的操作,然后进行表型评估,从而准确了解基因的功能。虽然这些方法在模式生物(如酿酒酵母)中被证明是有效的,但由于方法上的限制,在人类细胞中进行大规模基因操作在历史上是不可行的。然而,功能基因组学的最新进展,特别是基于 CRISPR 的筛选技术和下一代测序平台,使得集合筛选技术成为可能,从而可以对人体细胞中的生物现象进行大规模并行、无偏见的评估。本综述全面概述了适用于人类细胞的尖端功能基因组筛选技术,包括从 shRNA 筛选到现代 CRISPR 筛选。此外,我们还探讨了 CRISPR 平台与单细胞方法的整合,以便在全局水平上监测基因扰动后的基因表达、染色质可及性、表观遗传调控和染色质结构。通过深入了解这些基因组筛选方法,本综述旨在为基因组研究和个性化医疗提供更有针对性和更有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unlocking biological mechanisms with integrative functional genomics approaches

Reverse genetics offers precise functional insights into genes through the targeted manipulation of gene expression followed by phenotypic assessment. While these approaches have proven effective in model organisms such as Saccharomyces cerevisiae, large-scale genetic manipulations in human cells were historically unfeasible due to methodological limitations. However, recent advancements in functional genomics, particularly clustered regularly interspaced short palindromic repeats (CRISPR)-based screening technologies and next-generation sequencing platforms, have enabled pooled screening technologies that allow massively parallel, unbiased assessments of biological phenomena in human cells. This review provides a comprehensive overview of cutting-edge functional genomic screening technologies applicable to human cells, ranging from short hairpin RNA screens to modern CRISPR screens. Additionally, we explore the integration of CRISPR platforms with single-cell approaches to monitor gene expression, chromatin accessibility, epigenetic regulation, and chromatin architecture following genetic perturbations at the omics level. By offering an in-depth understanding of these genomic screening methods, this review aims to provide insights into more targeted and effective strategies for genomic research and personalized medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecules and Cells
Molecules and Cells 生物-生化与分子生物学
CiteScore
6.60
自引率
10.50%
发文量
83
审稿时长
2.3 months
期刊介绍: Molecules and Cells is an international on-line open-access journal devoted to the advancement and dissemination of fundamental knowledge in molecular and cellular biology. It was launched in 1990 and ISO abbreviation is ''Mol. Cells''. Reports on a broad range of topics of general interest to molecular and cell biologists are published. It is published on the last day of each month by the Korean Society for Molecular and Cellular Biology.
期刊最新文献
The role of p21 in cellular senescence and aging-related diseases Cellular and metabolic function of GIRK1 potassium channels expressed by arcuate POMC and NPY/AgRP neurons Brief guide to flow cytometry Effects of phospholipase D1-inhibitory peptide on the growth and metastasis of gastric cancer cells The emerging role of gut hormones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1