使用 clusterProfiler 表征多组学数据。

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Protocols Pub Date : 2024-07-17 DOI:10.1038/s41596-024-01020-z
Shuangbin Xu, Erqiang Hu, Yantong Cai, Zijing Xie, Xiao Luo, Li Zhan, Wenli Tang, Qianwen Wang, Bingdong Liu, Rui Wang, Wenqin Xie, Tianzhi Wu, Liwei Xie, Guangchuang Yu
{"title":"使用 clusterProfiler 表征多组学数据。","authors":"Shuangbin Xu, Erqiang Hu, Yantong Cai, Zijing Xie, Xiao Luo, Li Zhan, Wenli Tang, Qianwen Wang, Bingdong Liu, Rui Wang, Wenqin Xie, Tianzhi Wu, Liwei Xie, Guangchuang Yu","doi":"10.1038/s41596-024-01020-z","DOIUrl":null,"url":null,"abstract":"With the advent of multiomics, software capable of multidimensional enrichment analysis has become increasingly crucial for uncovering gene set variations in biological processes and disease pathways. This is essential for elucidating disease mechanisms and identifying potential therapeutic targets. clusterProfiler stands out for its comprehensive utilization of databases and advanced visualization features. Importantly, clusterProfiler supports various biological knowledge, including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, through performing over-representation and gene set enrichment analyses. A key feature is that clusterProfiler allows users to choose from various graphical outputs to visualize results, enhancing interpretability. This protocol describes innovative ways in which clusterProfiler has been used for integrating metabolomics and metagenomics analyses, identifying and characterizing transcription factors under stress conditions, and annotating cells in single-cell studies. In all cases, the computational steps can be completed within ~2 min. clusterProfiler is released through the Bioconductor project and can be accessed via https://bioconductor.org/packages/clusterProfiler/ . clusterProfiler is a tool for characterizing and visualizing omics data. The example procedures show integration of metabolomics and metagenomics analyses, characterization of transcription factors and annotation of cells in single-cell studies.","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":"19 11","pages":"3292-3320"},"PeriodicalIF":13.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using clusterProfiler to characterize multiomics data\",\"authors\":\"Shuangbin Xu, Erqiang Hu, Yantong Cai, Zijing Xie, Xiao Luo, Li Zhan, Wenli Tang, Qianwen Wang, Bingdong Liu, Rui Wang, Wenqin Xie, Tianzhi Wu, Liwei Xie, Guangchuang Yu\",\"doi\":\"10.1038/s41596-024-01020-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of multiomics, software capable of multidimensional enrichment analysis has become increasingly crucial for uncovering gene set variations in biological processes and disease pathways. This is essential for elucidating disease mechanisms and identifying potential therapeutic targets. clusterProfiler stands out for its comprehensive utilization of databases and advanced visualization features. Importantly, clusterProfiler supports various biological knowledge, including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, through performing over-representation and gene set enrichment analyses. A key feature is that clusterProfiler allows users to choose from various graphical outputs to visualize results, enhancing interpretability. This protocol describes innovative ways in which clusterProfiler has been used for integrating metabolomics and metagenomics analyses, identifying and characterizing transcription factors under stress conditions, and annotating cells in single-cell studies. In all cases, the computational steps can be completed within ~2 min. clusterProfiler is released through the Bioconductor project and can be accessed via https://bioconductor.org/packages/clusterProfiler/ . clusterProfiler is a tool for characterizing and visualizing omics data. The example procedures show integration of metabolomics and metagenomics analyses, characterization of transcription factors and annotation of cells in single-cell studies.\",\"PeriodicalId\":18901,\"journal\":{\"name\":\"Nature Protocols\",\"volume\":\"19 11\",\"pages\":\"3292-3320\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Protocols\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41596-024-01020-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41596-024-01020-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

随着多组学技术的发展,能够进行多维富集分析的软件对于揭示生物过程和疾病通路中的基因组变化越来越重要。clusterProfiler 因其对数据库的综合利用和先进的可视化功能而脱颖而出。重要的是,clusterProfiler 支持各种生物学知识,包括基因本体论和京都基因和基因组百科全书,通过执行过度呈现和基因组富集分析。一个主要特点是,clusterProfiler 允许用户从各种图形输出中选择可视化结果,从而提高了可解释性。本协议介绍了将 clusterProfiler 用于整合代谢组学和元基因组学分析、鉴定和描述应激条件下的转录因子以及在单细胞研究中注释细胞的创新方法。clusterProfiler 通过 Bioconductor 项目发布,可通过 https://bioconductor.org/packages/clusterProfiler/ 访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using clusterProfiler to characterize multiomics data
With the advent of multiomics, software capable of multidimensional enrichment analysis has become increasingly crucial for uncovering gene set variations in biological processes and disease pathways. This is essential for elucidating disease mechanisms and identifying potential therapeutic targets. clusterProfiler stands out for its comprehensive utilization of databases and advanced visualization features. Importantly, clusterProfiler supports various biological knowledge, including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, through performing over-representation and gene set enrichment analyses. A key feature is that clusterProfiler allows users to choose from various graphical outputs to visualize results, enhancing interpretability. This protocol describes innovative ways in which clusterProfiler has been used for integrating metabolomics and metagenomics analyses, identifying and characterizing transcription factors under stress conditions, and annotating cells in single-cell studies. In all cases, the computational steps can be completed within ~2 min. clusterProfiler is released through the Bioconductor project and can be accessed via https://bioconductor.org/packages/clusterProfiler/ . clusterProfiler is a tool for characterizing and visualizing omics data. The example procedures show integration of metabolomics and metagenomics analyses, characterization of transcription factors and annotation of cells in single-cell studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
期刊最新文献
Frequency locked whispering evanescent resonator (FLOWER) for biochemical sensing applications. Sialic acid aptamer and RNA in situ hybridization-mediated proximity ligation assay for spatial imaging of glycoRNAs in single cells. Lymphatic collection and cell isolation from mouse models for multiomic profiling. Standardized workflow for multiplexed charge detection mass spectrometry on orbitrap analyzers. A guide to building a low-cost centrifuge force microscope module for single-molecule force experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1