Andreas Averheim, Stefan Stagge, Leif J. Jönsson, Sylvia H. Larsson, Mikael Thyrel
{"title":"通过蒸汽爆炸对用 2-萘酚预处理过的软木树皮进行单独水解和发酵。","authors":"Andreas Averheim, Stefan Stagge, Leif J. Jönsson, Sylvia H. Larsson, Mikael Thyrel","doi":"10.1186/s13068-024-02552-y","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>2-Naphthol, a carbocation scavenger, is known to mitigate lignin condensation during the acidic processing of lignocellulosic biomass, which may benefit downstream processing of the resulting materials. Consequently, various raw materials have demonstrated improved enzymatic saccharification yields for substrates pretreated through autohydrolysis and dilute acid hydrolysis in the presence of 2-naphthol. However, 2-naphthol is toxic to ethanol-producing organisms, which may hinder its potential application. Little is known about the implications of 2-naphthol in combination with the pretreatment of softwood bark during continuous steam explosion in an industrially scalable system.</p><h3>Results</h3><p>The 2-naphthol-pretreated softwood bark was examined through spectroscopic techniques and subjected to separate hydrolysis and fermentation along with a reference excluding the scavenger and a detoxified sample washed with ethanol. The extractions of the pretreated materials with water resulted in a lower aromatic content in the extracts and stronger FTIR signals, possibly related to guaiacyl lignin, in the nonextractable residue when 2-naphthol was used during pretreatment. In addition, cyclohexane/acetone (9:1) extraction revealed the presence of pristine 2-naphthol in the extracts and increased aromatic content of the nonextractable residue detectable by NMR for the scavenger-pretreated materials. Whole-slurry enzymatic saccharification at 12% solids loading revealed that elevated saccharification recoveries after 48 h could not be achieved with the help of the scavenger. Glucose concentrations of 16.9 (reference) and 15.8 g/l (2-naphthol) could be obtained after 48 h of hydrolysis. However, increased inhibition during fermentation of the scavenger-pretreated hydrolysate, indicated by yeast cell growth, was slight and could be entirely overcome by the detoxification stage. The ethanol yields from fermentable sugars after 24 h were 0.45 (reference), 0.45 (2-naphthol), and 0.49 g/g (2-naphthol, detoxified).</p><h3>Conclusion</h3><p>The carbocation scavenger 2-naphthol did not increase the saccharification yield of softwood bark pretreated in an industrially scalable system for continuous steam explosion. On the other hand, it was shown that the scavenger's inhibitory effects on fermenting microorganisms can be overcome by controlling the pretreatment conditions to avoid cross-inhibition or detoxifying the substrates through ethanol washing. This study underlines the need to jointly optimize all the main processing steps.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253379/pdf/","citationCount":"0","resultStr":"{\"title\":\"Separate hydrolysis and fermentation of softwood bark pretreated with 2-naphthol by steam explosion\",\"authors\":\"Andreas Averheim, Stefan Stagge, Leif J. Jönsson, Sylvia H. Larsson, Mikael Thyrel\",\"doi\":\"10.1186/s13068-024-02552-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>2-Naphthol, a carbocation scavenger, is known to mitigate lignin condensation during the acidic processing of lignocellulosic biomass, which may benefit downstream processing of the resulting materials. Consequently, various raw materials have demonstrated improved enzymatic saccharification yields for substrates pretreated through autohydrolysis and dilute acid hydrolysis in the presence of 2-naphthol. However, 2-naphthol is toxic to ethanol-producing organisms, which may hinder its potential application. Little is known about the implications of 2-naphthol in combination with the pretreatment of softwood bark during continuous steam explosion in an industrially scalable system.</p><h3>Results</h3><p>The 2-naphthol-pretreated softwood bark was examined through spectroscopic techniques and subjected to separate hydrolysis and fermentation along with a reference excluding the scavenger and a detoxified sample washed with ethanol. The extractions of the pretreated materials with water resulted in a lower aromatic content in the extracts and stronger FTIR signals, possibly related to guaiacyl lignin, in the nonextractable residue when 2-naphthol was used during pretreatment. In addition, cyclohexane/acetone (9:1) extraction revealed the presence of pristine 2-naphthol in the extracts and increased aromatic content of the nonextractable residue detectable by NMR for the scavenger-pretreated materials. Whole-slurry enzymatic saccharification at 12% solids loading revealed that elevated saccharification recoveries after 48 h could not be achieved with the help of the scavenger. Glucose concentrations of 16.9 (reference) and 15.8 g/l (2-naphthol) could be obtained after 48 h of hydrolysis. However, increased inhibition during fermentation of the scavenger-pretreated hydrolysate, indicated by yeast cell growth, was slight and could be entirely overcome by the detoxification stage. The ethanol yields from fermentable sugars after 24 h were 0.45 (reference), 0.45 (2-naphthol), and 0.49 g/g (2-naphthol, detoxified).</p><h3>Conclusion</h3><p>The carbocation scavenger 2-naphthol did not increase the saccharification yield of softwood bark pretreated in an industrially scalable system for continuous steam explosion. On the other hand, it was shown that the scavenger's inhibitory effects on fermenting microorganisms can be overcome by controlling the pretreatment conditions to avoid cross-inhibition or detoxifying the substrates through ethanol washing. This study underlines the need to jointly optimize all the main processing steps.</p></div>\",\"PeriodicalId\":494,\"journal\":{\"name\":\"Biotechnology for Biofuels\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253379/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13068-024-02552-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02552-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Separate hydrolysis and fermentation of softwood bark pretreated with 2-naphthol by steam explosion
Background
2-Naphthol, a carbocation scavenger, is known to mitigate lignin condensation during the acidic processing of lignocellulosic biomass, which may benefit downstream processing of the resulting materials. Consequently, various raw materials have demonstrated improved enzymatic saccharification yields for substrates pretreated through autohydrolysis and dilute acid hydrolysis in the presence of 2-naphthol. However, 2-naphthol is toxic to ethanol-producing organisms, which may hinder its potential application. Little is known about the implications of 2-naphthol in combination with the pretreatment of softwood bark during continuous steam explosion in an industrially scalable system.
Results
The 2-naphthol-pretreated softwood bark was examined through spectroscopic techniques and subjected to separate hydrolysis and fermentation along with a reference excluding the scavenger and a detoxified sample washed with ethanol. The extractions of the pretreated materials with water resulted in a lower aromatic content in the extracts and stronger FTIR signals, possibly related to guaiacyl lignin, in the nonextractable residue when 2-naphthol was used during pretreatment. In addition, cyclohexane/acetone (9:1) extraction revealed the presence of pristine 2-naphthol in the extracts and increased aromatic content of the nonextractable residue detectable by NMR for the scavenger-pretreated materials. Whole-slurry enzymatic saccharification at 12% solids loading revealed that elevated saccharification recoveries after 48 h could not be achieved with the help of the scavenger. Glucose concentrations of 16.9 (reference) and 15.8 g/l (2-naphthol) could be obtained after 48 h of hydrolysis. However, increased inhibition during fermentation of the scavenger-pretreated hydrolysate, indicated by yeast cell growth, was slight and could be entirely overcome by the detoxification stage. The ethanol yields from fermentable sugars after 24 h were 0.45 (reference), 0.45 (2-naphthol), and 0.49 g/g (2-naphthol, detoxified).
Conclusion
The carbocation scavenger 2-naphthol did not increase the saccharification yield of softwood bark pretreated in an industrially scalable system for continuous steam explosion. On the other hand, it was shown that the scavenger's inhibitory effects on fermenting microorganisms can be overcome by controlling the pretreatment conditions to avoid cross-inhibition or detoxifying the substrates through ethanol washing. This study underlines the need to jointly optimize all the main processing steps.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis