通过细胞周期、端粒酶、血管生成和转移创新癌症治疗。

DNA and cell biology Pub Date : 2024-09-01 Epub Date: 2024-07-17 DOI:10.1089/dna.2024.0109
Tooba Yousefi, Bahareh Mohammadi Jobani, Reyhaneh Taebi, Durdi Qujeq
{"title":"通过细胞周期、端粒酶、血管生成和转移创新癌症治疗。","authors":"Tooba Yousefi, Bahareh Mohammadi Jobani, Reyhaneh Taebi, Durdi Qujeq","doi":"10.1089/dna.2024.0109","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer remains a formidable challenge in the field of medicine, necessitating innovative therapeutic strategies to combat its relentless progression. The cell cycle, a tightly regulated process governing cell growth and division, plays a pivotal role in cancer development. Dysregulation of the cell cycle allows cancer cells to proliferate uncontrollably. Therapeutic interventions designed to disrupt the cell cycle offer promise in restraining tumor growth and progression. Telomerase, an enzyme responsible for maintaining telomere length, is often overactive in cancer cells, conferring them with immortality. Targeting telomerase presents an opportunity to limit the replicative potential of cancer cells and hinder tumor growth. Angiogenesis, the formation of new blood vessels, is essential for tumor growth and metastasis. Strategies aimed at inhibiting angiogenesis seek to deprive tumors of their vital blood supply, thereby impeding their progression. Metastasis, the spread of cancer cells from the primary tumor to distant sites, is a major challenge in cancer therapy. Research efforts are focused on understanding the underlying mechanisms of metastasis and developing interventions to disrupt this deadly process. This review provides a glimpse into the multifaceted approach to cancer therapy, addressing critical aspects of cancer biology-cell cycle regulation, telomerase activity, angiogenesis, and metastasis. Through ongoing research and innovative strategies, the field of oncology continues to advance, offering new hope for improved treatment outcomes and enhanced quality of life for cancer patients.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":"438-451"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovating Cancer Treatment Through Cell Cycle, Telomerase, Angiogenesis, and Metastasis.\",\"authors\":\"Tooba Yousefi, Bahareh Mohammadi Jobani, Reyhaneh Taebi, Durdi Qujeq\",\"doi\":\"10.1089/dna.2024.0109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer remains a formidable challenge in the field of medicine, necessitating innovative therapeutic strategies to combat its relentless progression. The cell cycle, a tightly regulated process governing cell growth and division, plays a pivotal role in cancer development. Dysregulation of the cell cycle allows cancer cells to proliferate uncontrollably. Therapeutic interventions designed to disrupt the cell cycle offer promise in restraining tumor growth and progression. Telomerase, an enzyme responsible for maintaining telomere length, is often overactive in cancer cells, conferring them with immortality. Targeting telomerase presents an opportunity to limit the replicative potential of cancer cells and hinder tumor growth. Angiogenesis, the formation of new blood vessels, is essential for tumor growth and metastasis. Strategies aimed at inhibiting angiogenesis seek to deprive tumors of their vital blood supply, thereby impeding their progression. Metastasis, the spread of cancer cells from the primary tumor to distant sites, is a major challenge in cancer therapy. Research efforts are focused on understanding the underlying mechanisms of metastasis and developing interventions to disrupt this deadly process. This review provides a glimpse into the multifaceted approach to cancer therapy, addressing critical aspects of cancer biology-cell cycle regulation, telomerase activity, angiogenesis, and metastasis. Through ongoing research and innovative strategies, the field of oncology continues to advance, offering new hope for improved treatment outcomes and enhanced quality of life for cancer patients.</p>\",\"PeriodicalId\":93981,\"journal\":{\"name\":\"DNA and cell biology\",\"volume\":\" \",\"pages\":\"438-451\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA and cell biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/dna.2024.0109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/dna.2024.0109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

癌症仍然是医学领域的一个巨大挑战,需要创新的治疗策略来对抗其无情的发展。细胞周期是一个严格调控细胞生长和分裂的过程,在癌症的发展过程中起着至关重要的作用。细胞周期失调会使癌细胞不受控制地增殖。旨在破坏细胞周期的治疗干预有望抑制肿瘤的生长和进展。端粒酶是一种负责维持端粒长度的酶,它在癌细胞中往往过度活跃,使癌细胞具有永生性。以端粒酶为靶点可以限制癌细胞的复制潜力,阻碍肿瘤生长。血管生成(新血管的形成)对肿瘤的生长和转移至关重要。抑制血管生成的策略旨在剥夺肿瘤的重要血液供应,从而阻碍肿瘤的发展。转移,即癌细胞从原发肿瘤向远处扩散,是癌症治疗的一大挑战。研究工作的重点是了解转移的基本机制,并开发干预措施来破坏这一致命过程。本综述介绍了癌症治疗的多方面方法,涉及癌症生物学的关键方面--细胞周期调控、端粒酶活性、血管生成和转移。通过持续的研究和创新策略,肿瘤学领域不断进步,为改善治疗效果和提高癌症患者的生活质量带来了新的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Innovating Cancer Treatment Through Cell Cycle, Telomerase, Angiogenesis, and Metastasis.

Cancer remains a formidable challenge in the field of medicine, necessitating innovative therapeutic strategies to combat its relentless progression. The cell cycle, a tightly regulated process governing cell growth and division, plays a pivotal role in cancer development. Dysregulation of the cell cycle allows cancer cells to proliferate uncontrollably. Therapeutic interventions designed to disrupt the cell cycle offer promise in restraining tumor growth and progression. Telomerase, an enzyme responsible for maintaining telomere length, is often overactive in cancer cells, conferring them with immortality. Targeting telomerase presents an opportunity to limit the replicative potential of cancer cells and hinder tumor growth. Angiogenesis, the formation of new blood vessels, is essential for tumor growth and metastasis. Strategies aimed at inhibiting angiogenesis seek to deprive tumors of their vital blood supply, thereby impeding their progression. Metastasis, the spread of cancer cells from the primary tumor to distant sites, is a major challenge in cancer therapy. Research efforts are focused on understanding the underlying mechanisms of metastasis and developing interventions to disrupt this deadly process. This review provides a glimpse into the multifaceted approach to cancer therapy, addressing critical aspects of cancer biology-cell cycle regulation, telomerase activity, angiogenesis, and metastasis. Through ongoing research and innovative strategies, the field of oncology continues to advance, offering new hope for improved treatment outcomes and enhanced quality of life for cancer patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VIRMA-Mediated the m6A Methylation of SCD Facilitates Wilms' Tumor Progression via AMPK Pathway. Liquiritin as a Tumor Suppressor Prevents the Development of Breast Cancer via the Epidermal Growth Factor Receptor/Mitogen-Activated Protein Kinase 8 Signaling Pathway. The Role of microRNAs in Lidocaine-Induced Spinal Cord Neurotoxicity: An Exploration Based on Bioinformatics Analysis. Identification and Analysis of Autophagy-Related Genes as Diagnostic Markers and Potential Therapeutic Targets for Tuberculosis Through Bioinformatics. METTL3-Induced m6A Modification Enhances Hsa_Circ_0136959 Expression to Impair the Tumor Characteristics of Papillary Thyroid Carcinoma via Accelerating Ferroptosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1