核心核苷酸切除修复途径中的蛋白质相互作用

IF 3 3区 生物学 Q2 GENETICS & HEREDITY DNA Repair Pub Date : 2024-07-14 DOI:10.1016/j.dnarep.2024.103728
Areetha D’Souza , Mihyun Kim , Walter J. Chazin , Orlando D. Schärer
{"title":"核心核苷酸切除修复途径中的蛋白质相互作用","authors":"Areetha D’Souza ,&nbsp;Mihyun Kim ,&nbsp;Walter J. Chazin ,&nbsp;Orlando D. Schärer","doi":"10.1016/j.dnarep.2024.103728","DOIUrl":null,"url":null,"abstract":"<div><p>Nucleotide excision repair (NER) clears genomes of DNA adducts formed by UV light, environmental agents, and antitumor drugs. Gene mutations that lead to defects in the core NER reaction cause the skin cancer-prone disease <em>xeroderma pigmentosum</em>. In NER, DNA lesions are excised within an oligonucleotide of 25–30 residues via a complex, multi-step reaction that is regulated by protein-protein interactions. These interactions were first characterized in the 1990s using pull-down, co-IP and yeast two-hybrid assays. More recently, high-resolution structures and detailed functional studies have started to yield detailed pictures of the progression along the NER reaction coordinate. In this review, we highlight how the study of interactions among proteins by structural and/or functional studies have provided insights into the mechanisms by which the NER machinery recognizes and excises DNA lesions. Furthermore, we identify reported, but poorly characterized or unsubstantiated interactions in need of further validation.</p></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"141 ","pages":"Article 103728"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein-protein interactions in the core nucleotide excision repair pathway\",\"authors\":\"Areetha D’Souza ,&nbsp;Mihyun Kim ,&nbsp;Walter J. Chazin ,&nbsp;Orlando D. Schärer\",\"doi\":\"10.1016/j.dnarep.2024.103728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nucleotide excision repair (NER) clears genomes of DNA adducts formed by UV light, environmental agents, and antitumor drugs. Gene mutations that lead to defects in the core NER reaction cause the skin cancer-prone disease <em>xeroderma pigmentosum</em>. In NER, DNA lesions are excised within an oligonucleotide of 25–30 residues via a complex, multi-step reaction that is regulated by protein-protein interactions. These interactions were first characterized in the 1990s using pull-down, co-IP and yeast two-hybrid assays. More recently, high-resolution structures and detailed functional studies have started to yield detailed pictures of the progression along the NER reaction coordinate. In this review, we highlight how the study of interactions among proteins by structural and/or functional studies have provided insights into the mechanisms by which the NER machinery recognizes and excises DNA lesions. Furthermore, we identify reported, but poorly characterized or unsubstantiated interactions in need of further validation.</p></div>\",\"PeriodicalId\":300,\"journal\":{\"name\":\"DNA Repair\",\"volume\":\"141 \",\"pages\":\"Article 103728\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Repair\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568786424001046\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786424001046","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

核苷酸切除修复(NER)可清除基因组中由紫外线、环境因子和抗肿瘤药物形成的 DNA 加合物。基因突变会导致核心 NER 反应缺陷,从而引发易患皮肤癌的色素性皮肤病。在 NER 反应中,DNA 病变通过复杂的多步反应在 25-30 个残基的寡核苷酸内被切除,该反应受蛋白质与蛋白质之间相互作用的调节。20 世纪 90 年代,人们首次利用牵引、共转录和酵母双杂交试验对这些相互作用进行了表征。最近,高分辨率结构和详细的功能研究开始详细揭示 NER 反应坐标的进展过程。在这篇综述中,我们重点介绍了通过结构和/或功能研究对蛋白质间相互作用的研究如何深入了解了 NER 机制识别和切除 DNA 病变的机制。此外,我们还指出了已报道但特征不清或未经证实的相互作用,这些相互作用需要进一步验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Protein-protein interactions in the core nucleotide excision repair pathway

Nucleotide excision repair (NER) clears genomes of DNA adducts formed by UV light, environmental agents, and antitumor drugs. Gene mutations that lead to defects in the core NER reaction cause the skin cancer-prone disease xeroderma pigmentosum. In NER, DNA lesions are excised within an oligonucleotide of 25–30 residues via a complex, multi-step reaction that is regulated by protein-protein interactions. These interactions were first characterized in the 1990s using pull-down, co-IP and yeast two-hybrid assays. More recently, high-resolution structures and detailed functional studies have started to yield detailed pictures of the progression along the NER reaction coordinate. In this review, we highlight how the study of interactions among proteins by structural and/or functional studies have provided insights into the mechanisms by which the NER machinery recognizes and excises DNA lesions. Furthermore, we identify reported, but poorly characterized or unsubstantiated interactions in need of further validation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DNA Repair
DNA Repair 生物-毒理学
CiteScore
7.60
自引率
5.30%
发文量
91
审稿时长
59 days
期刊介绍: DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease. DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.
期刊最新文献
Discovery of KPT-6566 as STAG1/2 Inhibitor sensitizing PARP and NHEJ Inhibitors to suppress tumor cells growth in vitro Intersection of the fragile X-related disorders and the DNA damage response One-ended and two-ended breaks at nickase-broken replication forks Transient HR enhancement by RAD51-stimulatory compound confers protection on intestinal rather than hematopoietic tissue against irradiation in mice 53BP1-the ‘Pandora’s box’ of genome integrity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1