MGFA:融合红外和可见光图像的多尺度全局特征自动编码器

IF 3.4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Signal Processing-Image Communication Pub Date : 2024-07-14 DOI:10.1016/j.image.2024.117168
Xiaoxuan Chen , Shuwen Xu , Shaohai Hu , Xiaole Ma
{"title":"MGFA:融合红外和可见光图像的多尺度全局特征自动编码器","authors":"Xiaoxuan Chen ,&nbsp;Shuwen Xu ,&nbsp;Shaohai Hu ,&nbsp;Xiaole Ma","doi":"10.1016/j.image.2024.117168","DOIUrl":null,"url":null,"abstract":"<div><p>Since the convolutional operation pays too much attention to local information, resulting in the loss of global information and a decline in fusion quality. In order to ensure that the fused image fully captures the features of the entire scene, an end-to-end Multi-scale Global Feature Autoencoder (MGFA) is proposed in this paper, which can generate fused images with both global and local information. In this network, a multi-scale global feature extraction module is proposed, which combines dilated convolutional modules with the Global Context Block (GCBlock) to extract the global features ignored by the convolutional operation. In addition, an adaptive embedded residual fusion module is proposed to fuse different frequency components in the source images with the idea of embedded residual learning. This can enrich the detailed texture of the fused results. Extensive qualitative and quantitative experiments have demonstrated that the proposed method can achieve excellent results in retaining global information and improving visual effects. Furthermore, the fused images obtained in this paper are more adapted to the object detection task and can assist in improving the precision of detection.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"128 ","pages":"Article 117168"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MGFA : A multi-scale global feature autoencoder to fuse infrared and visible images\",\"authors\":\"Xiaoxuan Chen ,&nbsp;Shuwen Xu ,&nbsp;Shaohai Hu ,&nbsp;Xiaole Ma\",\"doi\":\"10.1016/j.image.2024.117168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since the convolutional operation pays too much attention to local information, resulting in the loss of global information and a decline in fusion quality. In order to ensure that the fused image fully captures the features of the entire scene, an end-to-end Multi-scale Global Feature Autoencoder (MGFA) is proposed in this paper, which can generate fused images with both global and local information. In this network, a multi-scale global feature extraction module is proposed, which combines dilated convolutional modules with the Global Context Block (GCBlock) to extract the global features ignored by the convolutional operation. In addition, an adaptive embedded residual fusion module is proposed to fuse different frequency components in the source images with the idea of embedded residual learning. This can enrich the detailed texture of the fused results. Extensive qualitative and quantitative experiments have demonstrated that the proposed method can achieve excellent results in retaining global information and improving visual effects. Furthermore, the fused images obtained in this paper are more adapted to the object detection task and can assist in improving the precision of detection.</p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"128 \",\"pages\":\"Article 117168\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596524000699\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000699","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于卷积运算过于关注局部信息,导致全局信息丢失,融合质量下降。为了确保融合后的图像能充分捕捉整个场景的特征,本文提出了一种端到端的多尺度全局特征自动编码器(MGFA),它能生成同时包含全局和局部信息的融合图像。在该网络中,提出了一个多尺度全局特征提取模块,它将扩张卷积模块与全局上下文块(GCBlock)相结合,以提取卷积运算忽略的全局特征。此外,还提出了自适应嵌入式残差融合模块,利用嵌入式残差学习的思想融合源图像中的不同频率成分。这可以丰富融合结果的细节纹理。广泛的定性和定量实验表明,所提出的方法在保留全局信息和改善视觉效果方面都能取得很好的效果。此外,本文获得的融合图像更适应物体检测任务,有助于提高检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MGFA : A multi-scale global feature autoencoder to fuse infrared and visible images

Since the convolutional operation pays too much attention to local information, resulting in the loss of global information and a decline in fusion quality. In order to ensure that the fused image fully captures the features of the entire scene, an end-to-end Multi-scale Global Feature Autoencoder (MGFA) is proposed in this paper, which can generate fused images with both global and local information. In this network, a multi-scale global feature extraction module is proposed, which combines dilated convolutional modules with the Global Context Block (GCBlock) to extract the global features ignored by the convolutional operation. In addition, an adaptive embedded residual fusion module is proposed to fuse different frequency components in the source images with the idea of embedded residual learning. This can enrich the detailed texture of the fused results. Extensive qualitative and quantitative experiments have demonstrated that the proposed method can achieve excellent results in retaining global information and improving visual effects. Furthermore, the fused images obtained in this paper are more adapted to the object detection task and can assist in improving the precision of detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing-Image Communication
Signal Processing-Image Communication 工程技术-工程:电子与电气
CiteScore
8.40
自引率
2.90%
发文量
138
审稿时长
5.2 months
期刊介绍: Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following: To present a forum for the advancement of theory and practice of image communication. To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems. To contribute to a rapid information exchange between the industrial and academic environments. The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world. Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments. Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.
期刊最新文献
SES-ReNet: Lightweight deep learning model for human detection in hazy weather conditions HOI-V: One-stage human-object interaction detection based on multi-feature fusion in videos Text in the dark: Extremely low-light text image enhancement High efficiency deep image compression via channel-wise scale adaptive latent representation learning Double supervision for scene text detection and recognition based on BMINet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1