Xiaoxuan Chen , Shuwen Xu , Shaohai Hu , Xiaole Ma
{"title":"MGFA:融合红外和可见光图像的多尺度全局特征自动编码器","authors":"Xiaoxuan Chen , Shuwen Xu , Shaohai Hu , Xiaole Ma","doi":"10.1016/j.image.2024.117168","DOIUrl":null,"url":null,"abstract":"<div><p>Since the convolutional operation pays too much attention to local information, resulting in the loss of global information and a decline in fusion quality. In order to ensure that the fused image fully captures the features of the entire scene, an end-to-end Multi-scale Global Feature Autoencoder (MGFA) is proposed in this paper, which can generate fused images with both global and local information. In this network, a multi-scale global feature extraction module is proposed, which combines dilated convolutional modules with the Global Context Block (GCBlock) to extract the global features ignored by the convolutional operation. In addition, an adaptive embedded residual fusion module is proposed to fuse different frequency components in the source images with the idea of embedded residual learning. This can enrich the detailed texture of the fused results. Extensive qualitative and quantitative experiments have demonstrated that the proposed method can achieve excellent results in retaining global information and improving visual effects. Furthermore, the fused images obtained in this paper are more adapted to the object detection task and can assist in improving the precision of detection.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"128 ","pages":"Article 117168"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MGFA : A multi-scale global feature autoencoder to fuse infrared and visible images\",\"authors\":\"Xiaoxuan Chen , Shuwen Xu , Shaohai Hu , Xiaole Ma\",\"doi\":\"10.1016/j.image.2024.117168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since the convolutional operation pays too much attention to local information, resulting in the loss of global information and a decline in fusion quality. In order to ensure that the fused image fully captures the features of the entire scene, an end-to-end Multi-scale Global Feature Autoencoder (MGFA) is proposed in this paper, which can generate fused images with both global and local information. In this network, a multi-scale global feature extraction module is proposed, which combines dilated convolutional modules with the Global Context Block (GCBlock) to extract the global features ignored by the convolutional operation. In addition, an adaptive embedded residual fusion module is proposed to fuse different frequency components in the source images with the idea of embedded residual learning. This can enrich the detailed texture of the fused results. Extensive qualitative and quantitative experiments have demonstrated that the proposed method can achieve excellent results in retaining global information and improving visual effects. Furthermore, the fused images obtained in this paper are more adapted to the object detection task and can assist in improving the precision of detection.</p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"128 \",\"pages\":\"Article 117168\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596524000699\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000699","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
MGFA : A multi-scale global feature autoencoder to fuse infrared and visible images
Since the convolutional operation pays too much attention to local information, resulting in the loss of global information and a decline in fusion quality. In order to ensure that the fused image fully captures the features of the entire scene, an end-to-end Multi-scale Global Feature Autoencoder (MGFA) is proposed in this paper, which can generate fused images with both global and local information. In this network, a multi-scale global feature extraction module is proposed, which combines dilated convolutional modules with the Global Context Block (GCBlock) to extract the global features ignored by the convolutional operation. In addition, an adaptive embedded residual fusion module is proposed to fuse different frequency components in the source images with the idea of embedded residual learning. This can enrich the detailed texture of the fused results. Extensive qualitative and quantitative experiments have demonstrated that the proposed method can achieve excellent results in retaining global information and improving visual effects. Furthermore, the fused images obtained in this paper are more adapted to the object detection task and can assist in improving the precision of detection.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.