Shengqiang Mu , Wenda Li , Tianqi Wu , Guoxu Shu , Shoudong Huo
{"title":"基于深度学习的同时源数据混合域除错方法","authors":"Shengqiang Mu , Wenda Li , Tianqi Wu , Guoxu Shu , Shoudong Huo","doi":"10.1016/j.jappgeo.2024.105451","DOIUrl":null,"url":null,"abstract":"<div><p>The simultaneous source acquisition technology breaks the limitations of traditional seismic survey, which allows more than one source to fire almost at the same time. When the survey time is fixed, simultaneous source acquisition can increase the number of sources, while when the number of sources is fixed, this technique can greatly reduce the survey time. At present, the great advantages of this high-efficiency acquisition technology have received wide attention from academia and industry, and researchers have proposed a series of deblending methods and obtained good results. In recent years, the rapid development of deep learning provides a new solution for deblending, and it has obvious advantages in computational time compared to traditional methods when processing large-scale seismic data. We proposed a novel iterative deblending method based on deep learning, which integrates the advantages of seismic data processing in different domains. In the proposed method, by selecting the appropriate combination of domains, the separation quality is significantly improved compared to the deblended results in a single domain. The effectiveness of the proposed method is verified by deblending the synthetic and field data, and the better performance of the proposed method are demonstrated by comparing it with the multilevel median filter method and conventional deep learning-based methods.</p></div>","PeriodicalId":54882,"journal":{"name":"Journal of Applied Geophysics","volume":"228 ","pages":"Article 105451"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mixed domain deblending approach for simultaneous source data based on deep learning\",\"authors\":\"Shengqiang Mu , Wenda Li , Tianqi Wu , Guoxu Shu , Shoudong Huo\",\"doi\":\"10.1016/j.jappgeo.2024.105451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The simultaneous source acquisition technology breaks the limitations of traditional seismic survey, which allows more than one source to fire almost at the same time. When the survey time is fixed, simultaneous source acquisition can increase the number of sources, while when the number of sources is fixed, this technique can greatly reduce the survey time. At present, the great advantages of this high-efficiency acquisition technology have received wide attention from academia and industry, and researchers have proposed a series of deblending methods and obtained good results. In recent years, the rapid development of deep learning provides a new solution for deblending, and it has obvious advantages in computational time compared to traditional methods when processing large-scale seismic data. We proposed a novel iterative deblending method based on deep learning, which integrates the advantages of seismic data processing in different domains. In the proposed method, by selecting the appropriate combination of domains, the separation quality is significantly improved compared to the deblended results in a single domain. The effectiveness of the proposed method is verified by deblending the synthetic and field data, and the better performance of the proposed method are demonstrated by comparing it with the multilevel median filter method and conventional deep learning-based methods.</p></div>\",\"PeriodicalId\":54882,\"journal\":{\"name\":\"Journal of Applied Geophysics\",\"volume\":\"228 \",\"pages\":\"Article 105451\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926985124001678\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926985124001678","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
A mixed domain deblending approach for simultaneous source data based on deep learning
The simultaneous source acquisition technology breaks the limitations of traditional seismic survey, which allows more than one source to fire almost at the same time. When the survey time is fixed, simultaneous source acquisition can increase the number of sources, while when the number of sources is fixed, this technique can greatly reduce the survey time. At present, the great advantages of this high-efficiency acquisition technology have received wide attention from academia and industry, and researchers have proposed a series of deblending methods and obtained good results. In recent years, the rapid development of deep learning provides a new solution for deblending, and it has obvious advantages in computational time compared to traditional methods when processing large-scale seismic data. We proposed a novel iterative deblending method based on deep learning, which integrates the advantages of seismic data processing in different domains. In the proposed method, by selecting the appropriate combination of domains, the separation quality is significantly improved compared to the deblended results in a single domain. The effectiveness of the proposed method is verified by deblending the synthetic and field data, and the better performance of the proposed method are demonstrated by comparing it with the multilevel median filter method and conventional deep learning-based methods.
期刊介绍:
The Journal of Applied Geophysics with its key objective of responding to pertinent and timely needs, places particular emphasis on methodological developments and innovative applications of geophysical techniques for addressing environmental, engineering, and hydrological problems. Related topical research in exploration geophysics and in soil and rock physics is also covered by the Journal of Applied Geophysics.