{"title":"小檗碱纳米制剂在癫痫中的作用:新型治疗策略","authors":"Lekha Saha , Puja kumari , V.R. Sinha , Vipasha Gautam , Lavjot Kaur , Sunil Sharma , Amitava Chakrabarti","doi":"10.1016/j.eplepsyres.2024.107419","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of the present study was to develop a novel formulation of berberine (BBR) and demonstrate its anti-seizure effect in pentylenetetrazole (PTZ) induced kindling model in rats. Nanoparticles of BBR were formulated using Poly Lactic-<em>co</em>-Glycolic Acid (PLGA) as a polymer. Emulsification and solvent evaporation technique was used. PTZ induced kindling model in male wistar rat was used to demonstrate the anti-seizure effect of nano-BBR. The particle size obtained for the final formulation was 242.8 ± 67.35 nm with a PDI of 0.140 ± 0.01. PLGA encapsulated BBR nanoparticles showed the % encapsulation efficiency of 87.33 ± 2.42 % and % drug loading of 48.47 ± 1.34 %. In-vitro drug release data showed sustained release of nano-BBR as compared to BBR. Kinetic study data showed increase in AUC of nano-BBR (35,429.46 h.ng/ml) as compared to BBR (28,211.07 h.ng/ml). Cmax for nano- BBR (2251.90 ng/ml) is approximately 1.6 times greater than BBR (1505.50 ng/ml). Nano- BBR has shown the significant effect on the seizure score. The PLGA encapsulated berberine nanoparticles were prepared by an innovative simple method and offers excellent potential as an antiepileptic agent.</p></div>","PeriodicalId":11914,"journal":{"name":"Epilepsy Research","volume":"205 ","pages":"Article 107419"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of berberine nanoformulation in epilepsy: A novel therapeutic strategy\",\"authors\":\"Lekha Saha , Puja kumari , V.R. Sinha , Vipasha Gautam , Lavjot Kaur , Sunil Sharma , Amitava Chakrabarti\",\"doi\":\"10.1016/j.eplepsyres.2024.107419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of the present study was to develop a novel formulation of berberine (BBR) and demonstrate its anti-seizure effect in pentylenetetrazole (PTZ) induced kindling model in rats. Nanoparticles of BBR were formulated using Poly Lactic-<em>co</em>-Glycolic Acid (PLGA) as a polymer. Emulsification and solvent evaporation technique was used. PTZ induced kindling model in male wistar rat was used to demonstrate the anti-seizure effect of nano-BBR. The particle size obtained for the final formulation was 242.8 ± 67.35 nm with a PDI of 0.140 ± 0.01. PLGA encapsulated BBR nanoparticles showed the % encapsulation efficiency of 87.33 ± 2.42 % and % drug loading of 48.47 ± 1.34 %. In-vitro drug release data showed sustained release of nano-BBR as compared to BBR. Kinetic study data showed increase in AUC of nano-BBR (35,429.46 h.ng/ml) as compared to BBR (28,211.07 h.ng/ml). Cmax for nano- BBR (2251.90 ng/ml) is approximately 1.6 times greater than BBR (1505.50 ng/ml). Nano- BBR has shown the significant effect on the seizure score. The PLGA encapsulated berberine nanoparticles were prepared by an innovative simple method and offers excellent potential as an antiepileptic agent.</p></div>\",\"PeriodicalId\":11914,\"journal\":{\"name\":\"Epilepsy Research\",\"volume\":\"205 \",\"pages\":\"Article 107419\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epilepsy Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920121124001347\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsy Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920121124001347","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Role of berberine nanoformulation in epilepsy: A novel therapeutic strategy
The aim of the present study was to develop a novel formulation of berberine (BBR) and demonstrate its anti-seizure effect in pentylenetetrazole (PTZ) induced kindling model in rats. Nanoparticles of BBR were formulated using Poly Lactic-co-Glycolic Acid (PLGA) as a polymer. Emulsification and solvent evaporation technique was used. PTZ induced kindling model in male wistar rat was used to demonstrate the anti-seizure effect of nano-BBR. The particle size obtained for the final formulation was 242.8 ± 67.35 nm with a PDI of 0.140 ± 0.01. PLGA encapsulated BBR nanoparticles showed the % encapsulation efficiency of 87.33 ± 2.42 % and % drug loading of 48.47 ± 1.34 %. In-vitro drug release data showed sustained release of nano-BBR as compared to BBR. Kinetic study data showed increase in AUC of nano-BBR (35,429.46 h.ng/ml) as compared to BBR (28,211.07 h.ng/ml). Cmax for nano- BBR (2251.90 ng/ml) is approximately 1.6 times greater than BBR (1505.50 ng/ml). Nano- BBR has shown the significant effect on the seizure score. The PLGA encapsulated berberine nanoparticles were prepared by an innovative simple method and offers excellent potential as an antiepileptic agent.
期刊介绍:
Epilepsy Research provides for publication of high quality articles in both basic and clinical epilepsy research, with a special emphasis on translational research that ultimately relates to epilepsy as a human condition. The journal is intended to provide a forum for reporting the best and most rigorous epilepsy research from all disciplines ranging from biophysics and molecular biology to epidemiological and psychosocial research. As such the journal will publish original papers relevant to epilepsy from any scientific discipline and also studies of a multidisciplinary nature. Clinical and experimental research papers adopting fresh conceptual approaches to the study of epilepsy and its treatment are encouraged. The overriding criteria for publication are novelty, significant clinical or experimental relevance, and interest to a multidisciplinary audience in the broad arena of epilepsy. Review articles focused on any topic of epilepsy research will also be considered, but only if they present an exceptionally clear synthesis of current knowledge and future directions of a research area, based on a critical assessment of the available data or on hypotheses that are likely to stimulate more critical thinking and further advances in an area of epilepsy research.