用于宇宙射线研究的宇宙生成物 10Be 迁移的全面建模和实际参数化:SOCOL-AERv2-BE 模型

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Journal of Geophysical Research: Space Physics Pub Date : 2024-07-16 DOI:10.1029/2024JA032504
K. Golubenko, E. Rozanov, G. Kovaltsov, M. Baroni, T. Sukhodolov, I. Usoskin
{"title":"用于宇宙射线研究的宇宙生成物 10Be 迁移的全面建模和实际参数化:SOCOL-AERv2-BE 模型","authors":"K. Golubenko,&nbsp;E. Rozanov,&nbsp;G. Kovaltsov,&nbsp;M. Baroni,&nbsp;T. Sukhodolov,&nbsp;I. Usoskin","doi":"10.1029/2024JA032504","DOIUrl":null,"url":null,"abstract":"<p>A new full model of the atmospheric transport of cosmogenic <sup>10</sup>Be is presented based on the specialized SOCOL-AERv2-BE chemistry-climate model coupled with the CRAC:10Be isotope production model. The model includes all the relevant atmospheric processes and allows computing the isotope concentration at any given location and time. The full model is directly compared with <sup>10</sup>Be isotope measurements in five Antarctic and Greenland ice cores for the period 1980–2007. The model reasonably well reproduces the average concentration and solar-cycle dependency or the lack of it for most observational sites but does not perfectly catch the interannual variability at sites with complex orography likely due to the coarse model grid. This implies that the model correctly reproduces the large-scale atmospheric dynamics but effectively averages out synoptic-scale variability. It is found that the dominant source of <sup>10</sup>Be is located in the middle stratosphere (25–40 km), in the tropical (&lt;30° latitudes) and polar (&gt;60°) regions, as produced by galactic cosmic rays and solar energetic particles, respectively. It is shown that &gt;60% (90%) of <sup>10</sup>Be produced in the atmosphere reaches the Earth's surface within one (two) years, respectively. For practical purposes, a simple parameterization of the full-model results is presented which agrees with the full model within 20% in polar regions. This parameterization allows one to make a quick estimate of near-ground <sup>10</sup>Be concentrations based only on production rates without heavy calculations. This practical approach can be applied to studies of solar and geomagnetic variability using cosmogenic isotopes.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA032504","citationCount":"0","resultStr":"{\"title\":\"Full Modeling and Practical Parameterization of Cosmogenic 10Be Transport for Cosmic-Ray Studies: SOCOL-AERv2-BE Model\",\"authors\":\"K. Golubenko,&nbsp;E. Rozanov,&nbsp;G. Kovaltsov,&nbsp;M. Baroni,&nbsp;T. Sukhodolov,&nbsp;I. Usoskin\",\"doi\":\"10.1029/2024JA032504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new full model of the atmospheric transport of cosmogenic <sup>10</sup>Be is presented based on the specialized SOCOL-AERv2-BE chemistry-climate model coupled with the CRAC:10Be isotope production model. The model includes all the relevant atmospheric processes and allows computing the isotope concentration at any given location and time. The full model is directly compared with <sup>10</sup>Be isotope measurements in five Antarctic and Greenland ice cores for the period 1980–2007. The model reasonably well reproduces the average concentration and solar-cycle dependency or the lack of it for most observational sites but does not perfectly catch the interannual variability at sites with complex orography likely due to the coarse model grid. This implies that the model correctly reproduces the large-scale atmospheric dynamics but effectively averages out synoptic-scale variability. It is found that the dominant source of <sup>10</sup>Be is located in the middle stratosphere (25–40 km), in the tropical (&lt;30° latitudes) and polar (&gt;60°) regions, as produced by galactic cosmic rays and solar energetic particles, respectively. It is shown that &gt;60% (90%) of <sup>10</sup>Be produced in the atmosphere reaches the Earth's surface within one (two) years, respectively. For practical purposes, a simple parameterization of the full-model results is presented which agrees with the full model within 20% in polar regions. This parameterization allows one to make a quick estimate of near-ground <sup>10</sup>Be concentrations based only on production rates without heavy calculations. This practical approach can be applied to studies of solar and geomagnetic variability using cosmogenic isotopes.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA032504\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032504\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032504","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在专门的 SOCOL-AERv2-BE 化学-气候模型和 CRAC:10Be 同位素生产模型的基础上,提出了一个新的宇宙生成 10Be 大气传输全模型。该模型包括所有相关的大气过程,可以计算任何给定地点和时间的同位素浓度。将完整模型与 1980-2007 年期间五个南极和格陵兰冰芯中的 10Be 同位素测量结果进行了直接比较。该模型合理地再现了大多数观测点的平均浓度和太阳周期依赖性或缺乏这种依赖性的情况,但在地形复杂的观测点,由于模型网格较粗,并不能完全捕捉到年际变化。这意味着该模式正确地再现了大尺度大气动力学,但有效地平均了天气尺度的变化。研究发现,10Be 的主要来源位于平流层中部(25-40 公里)、热带地区(纬度 30°)和极地地区(纬度 60°),分别由银河宇宙射线和太阳高能粒子产生。研究表明,大气中产生的 10Be 有 60%(90%)分别在一(二)年内到达地球表面。为实用起见,对完整模型的结果进行了简单的参数化,在极地地区与完整模型的吻合度在 20% 以内。通过这种参数化方法,我们可以仅根据 10Be 的产生率快速估算近地 10Be 的浓度,而无需进行繁琐的计算。这种实用的方法可用于利用宇宙生成同位素研究太阳和地磁的变异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Full Modeling and Practical Parameterization of Cosmogenic 10Be Transport for Cosmic-Ray Studies: SOCOL-AERv2-BE Model

A new full model of the atmospheric transport of cosmogenic 10Be is presented based on the specialized SOCOL-AERv2-BE chemistry-climate model coupled with the CRAC:10Be isotope production model. The model includes all the relevant atmospheric processes and allows computing the isotope concentration at any given location and time. The full model is directly compared with 10Be isotope measurements in five Antarctic and Greenland ice cores for the period 1980–2007. The model reasonably well reproduces the average concentration and solar-cycle dependency or the lack of it for most observational sites but does not perfectly catch the interannual variability at sites with complex orography likely due to the coarse model grid. This implies that the model correctly reproduces the large-scale atmospheric dynamics but effectively averages out synoptic-scale variability. It is found that the dominant source of 10Be is located in the middle stratosphere (25–40 km), in the tropical (<30° latitudes) and polar (>60°) regions, as produced by galactic cosmic rays and solar energetic particles, respectively. It is shown that >60% (90%) of 10Be produced in the atmosphere reaches the Earth's surface within one (two) years, respectively. For practical purposes, a simple parameterization of the full-model results is presented which agrees with the full model within 20% in polar regions. This parameterization allows one to make a quick estimate of near-ground 10Be concentrations based only on production rates without heavy calculations. This practical approach can be applied to studies of solar and geomagnetic variability using cosmogenic isotopes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
期刊最新文献
Local Empirical Modeling of NmF2 Using Ionosonde Observations and the FISM2 Solar EUV Model A Statistical Survey of E-Region Anomalous Electron Heating Using Poker Flat Incoherent Scatter Radar Observations Evidence of Plasma Mixing at the Earth's Magnetopause Due To Kelvin Helmholtz Vortices Nonlinear Wave-Particle Interaction Effects on Radiation Belt Electron Dynamics in 9 October 2012 Storm First Observation of Temporal Variation of STEVE Altitudes Using Triangulation by Two Color Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1