Qing Sun, Fortunat Joos, Sebastian Lienert, Sarah Berthet, Dustin Carroll, Cheng Gong, Akihiko Ito, Atul K. Jain, Sian Kou-Giesbrecht, Angela Landolfi, Manfredi Manizza, Naiqing Pan, Michael Prather, Pierre Regnier, Laure Resplandy, Roland Séférian, Hao Shi, Parvadha Suntharalingam, Rona L. Thompson, Hanqin Tian, Nicolas Vuichard, Sönke Zaehle, Qing Zhu
{"title":"地表一氧化二氮通量和大气一氧化二氮的季节循环模型","authors":"Qing Sun, Fortunat Joos, Sebastian Lienert, Sarah Berthet, Dustin Carroll, Cheng Gong, Akihiko Ito, Atul K. Jain, Sian Kou-Giesbrecht, Angela Landolfi, Manfredi Manizza, Naiqing Pan, Michael Prather, Pierre Regnier, Laure Resplandy, Roland Séférian, Hao Shi, Parvadha Suntharalingam, Rona L. Thompson, Hanqin Tian, Nicolas Vuichard, Sönke Zaehle, Qing Zhu","doi":"10.1029/2023GB008010","DOIUrl":null,"url":null,"abstract":"<p>Nitrous oxide (N<sub>2</sub>O) is a greenhouse gas and stratospheric ozone-depleting substance with large and growing anthropogenic emissions. Previous studies identified the influx of N<sub>2</sub>O-depleted air from the stratosphere to partly cause the seasonality in tropospheric N<sub>2</sub>O (aN<sub>2</sub>O), but other contributions remain unclear. Here, we combine surface fluxes from eight land and four ocean models from phase 2 of the Nitrogen/N<sub>2</sub>O Model Intercomparison Project with tropospheric transport modeling to simulate aN<sub>2</sub>O at eight remote air sampling sites for modern and pre-industrial periods. Models show general agreement on the seasonal phasing of zonal-average N<sub>2</sub>O fluxes for most sites, but seasonal peak-to-peak amplitudes differ several-fold across models. The modeled seasonal amplitude of surface aN<sub>2</sub>O ranges from 0.25 to 0.80 ppb (interquartile ranges 21%–52% of median) for land, 0.14–0.25 ppb (17%–68%) for ocean, and 0.28–0.77 ppb (23%–52%) for combined flux contributions. The observed seasonal amplitude ranges from 0.34 to 1.08 ppb for these sites. The stratospheric contributions to aN<sub>2</sub>O, inferred by the difference between the surface-troposphere model and observations, show 16%–126% larger amplitudes and minima delayed by ∼1 month compared to Northern Hemisphere site observations. Land fluxes and their seasonal amplitude have increased since the pre-industrial era and are projected to grow further under anthropogenic activities. Our results demonstrate the increasing importance of land fluxes for aN<sub>2</sub>O seasonality. Considering the large model spread, in situ aN<sub>2</sub>O observations and atmospheric transport-chemistry models will provide opportunities for constraining terrestrial and oceanic biosphere models, critical for projecting carbon-nitrogen cycles under ongoing global warming.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 7","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB008010","citationCount":"0","resultStr":"{\"title\":\"The Modeled Seasonal Cycles of Surface N2O Fluxes and Atmospheric N2O\",\"authors\":\"Qing Sun, Fortunat Joos, Sebastian Lienert, Sarah Berthet, Dustin Carroll, Cheng Gong, Akihiko Ito, Atul K. Jain, Sian Kou-Giesbrecht, Angela Landolfi, Manfredi Manizza, Naiqing Pan, Michael Prather, Pierre Regnier, Laure Resplandy, Roland Séférian, Hao Shi, Parvadha Suntharalingam, Rona L. Thompson, Hanqin Tian, Nicolas Vuichard, Sönke Zaehle, Qing Zhu\",\"doi\":\"10.1029/2023GB008010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nitrous oxide (N<sub>2</sub>O) is a greenhouse gas and stratospheric ozone-depleting substance with large and growing anthropogenic emissions. Previous studies identified the influx of N<sub>2</sub>O-depleted air from the stratosphere to partly cause the seasonality in tropospheric N<sub>2</sub>O (aN<sub>2</sub>O), but other contributions remain unclear. Here, we combine surface fluxes from eight land and four ocean models from phase 2 of the Nitrogen/N<sub>2</sub>O Model Intercomparison Project with tropospheric transport modeling to simulate aN<sub>2</sub>O at eight remote air sampling sites for modern and pre-industrial periods. Models show general agreement on the seasonal phasing of zonal-average N<sub>2</sub>O fluxes for most sites, but seasonal peak-to-peak amplitudes differ several-fold across models. The modeled seasonal amplitude of surface aN<sub>2</sub>O ranges from 0.25 to 0.80 ppb (interquartile ranges 21%–52% of median) for land, 0.14–0.25 ppb (17%–68%) for ocean, and 0.28–0.77 ppb (23%–52%) for combined flux contributions. The observed seasonal amplitude ranges from 0.34 to 1.08 ppb for these sites. The stratospheric contributions to aN<sub>2</sub>O, inferred by the difference between the surface-troposphere model and observations, show 16%–126% larger amplitudes and minima delayed by ∼1 month compared to Northern Hemisphere site observations. Land fluxes and their seasonal amplitude have increased since the pre-industrial era and are projected to grow further under anthropogenic activities. Our results demonstrate the increasing importance of land fluxes for aN<sub>2</sub>O seasonality. Considering the large model spread, in situ aN<sub>2</sub>O observations and atmospheric transport-chemistry models will provide opportunities for constraining terrestrial and oceanic biosphere models, critical for projecting carbon-nitrogen cycles under ongoing global warming.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"38 7\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB008010\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023GB008010\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GB008010","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The Modeled Seasonal Cycles of Surface N2O Fluxes and Atmospheric N2O
Nitrous oxide (N2O) is a greenhouse gas and stratospheric ozone-depleting substance with large and growing anthropogenic emissions. Previous studies identified the influx of N2O-depleted air from the stratosphere to partly cause the seasonality in tropospheric N2O (aN2O), but other contributions remain unclear. Here, we combine surface fluxes from eight land and four ocean models from phase 2 of the Nitrogen/N2O Model Intercomparison Project with tropospheric transport modeling to simulate aN2O at eight remote air sampling sites for modern and pre-industrial periods. Models show general agreement on the seasonal phasing of zonal-average N2O fluxes for most sites, but seasonal peak-to-peak amplitudes differ several-fold across models. The modeled seasonal amplitude of surface aN2O ranges from 0.25 to 0.80 ppb (interquartile ranges 21%–52% of median) for land, 0.14–0.25 ppb (17%–68%) for ocean, and 0.28–0.77 ppb (23%–52%) for combined flux contributions. The observed seasonal amplitude ranges from 0.34 to 1.08 ppb for these sites. The stratospheric contributions to aN2O, inferred by the difference between the surface-troposphere model and observations, show 16%–126% larger amplitudes and minima delayed by ∼1 month compared to Northern Hemisphere site observations. Land fluxes and their seasonal amplitude have increased since the pre-industrial era and are projected to grow further under anthropogenic activities. Our results demonstrate the increasing importance of land fluxes for aN2O seasonality. Considering the large model spread, in situ aN2O observations and atmospheric transport-chemistry models will provide opportunities for constraining terrestrial and oceanic biosphere models, critical for projecting carbon-nitrogen cycles under ongoing global warming.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.