{"title":"步阳黄酒汤通过抑制大鼠脑微血管内皮细胞的糖酵解和细胞凋亡,抑制缺血性中风的发生","authors":"Ci Song , Xia Fang , Ni Fang, Fang Hu","doi":"10.1016/j.brainresbull.2024.111032","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Buyang Huanwu Decoction (BHD) is widely used in Chinese clinical practice for the treatment and prevention of ischemic cerebral vascular diseases. This study was designed to investigate the effects of BHD on ischemic stroke (IS) and its underlying mechanism.</p></div><div><h3>Methods</h3><p>The middle cerebral artery occlusion (MCAO) rat model and oxygen-glucose deprivation and reoxygenation (OGD/R) rat brain microvascular endothelial cell (RBMVEC) models were established. Brain infarction size and neurological score were calculated following MCAO surgery. Evans blue was used to measure blood brain barrier (BBB) permeability. Cell counting kit-8 (CCK-8) and TUNEL assays were performed to evaluate the cell viability and apoptosis of RBMVECs. Dual-luciferase reporter assay was used to analyze the transcriptional activities of apoptosis-related genes.</p></div><div><h3>Results</h3><p>Results showed that higher infarction volume, neurological scores, and BBB permeability in the MCAO group rats were reduced after BHD treatment. Drug serum (DS) treatment had no impact on the normal RBMVECs’ cell viability and cell apoptosis. Besides, DS treatment decreased the lactate production, glucose uptake, and extracellular acidification rate in normal and OGD/R-induced RBMVECs. DS treatment downregulated the protein levels of pan-lysine lactylation (kla), histone H3 lysine 18 lactylation (H3K18la), and the transcriptional of apoptotic protease activating factor-1 (Apaf-1) in OGD/R-treated RBMVECs. In addition, Apaf-1 overexpression decreased cell viability and increased apoptosis and glycolysis activity of OGD/R-treated RBMVECs.</p></div><div><h3>Conclusion</h3><p>In summary, BHD inhibited glycolysis and apoptosis via suppressing the pan-kla and H3K18la protein levels and the Apaf-1 transcriptional activity, thus restraining the progression of IS.</p></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"215 ","pages":"Article 111032"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0361923024001655/pdfft?md5=5f1e15fe27b32d0300267c692f4caedb&pid=1-s2.0-S0361923024001655-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Buyang Huanwu Decoction suppresses ischemic stroke by suppressing glycolysis and cell apoptosis in rat brain microvascular endothelial cells\",\"authors\":\"Ci Song , Xia Fang , Ni Fang, Fang Hu\",\"doi\":\"10.1016/j.brainresbull.2024.111032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Buyang Huanwu Decoction (BHD) is widely used in Chinese clinical practice for the treatment and prevention of ischemic cerebral vascular diseases. This study was designed to investigate the effects of BHD on ischemic stroke (IS) and its underlying mechanism.</p></div><div><h3>Methods</h3><p>The middle cerebral artery occlusion (MCAO) rat model and oxygen-glucose deprivation and reoxygenation (OGD/R) rat brain microvascular endothelial cell (RBMVEC) models were established. Brain infarction size and neurological score were calculated following MCAO surgery. Evans blue was used to measure blood brain barrier (BBB) permeability. Cell counting kit-8 (CCK-8) and TUNEL assays were performed to evaluate the cell viability and apoptosis of RBMVECs. Dual-luciferase reporter assay was used to analyze the transcriptional activities of apoptosis-related genes.</p></div><div><h3>Results</h3><p>Results showed that higher infarction volume, neurological scores, and BBB permeability in the MCAO group rats were reduced after BHD treatment. Drug serum (DS) treatment had no impact on the normal RBMVECs’ cell viability and cell apoptosis. Besides, DS treatment decreased the lactate production, glucose uptake, and extracellular acidification rate in normal and OGD/R-induced RBMVECs. DS treatment downregulated the protein levels of pan-lysine lactylation (kla), histone H3 lysine 18 lactylation (H3K18la), and the transcriptional of apoptotic protease activating factor-1 (Apaf-1) in OGD/R-treated RBMVECs. In addition, Apaf-1 overexpression decreased cell viability and increased apoptosis and glycolysis activity of OGD/R-treated RBMVECs.</p></div><div><h3>Conclusion</h3><p>In summary, BHD inhibited glycolysis and apoptosis via suppressing the pan-kla and H3K18la protein levels and the Apaf-1 transcriptional activity, thus restraining the progression of IS.</p></div>\",\"PeriodicalId\":9302,\"journal\":{\"name\":\"Brain Research Bulletin\",\"volume\":\"215 \",\"pages\":\"Article 111032\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0361923024001655/pdfft?md5=5f1e15fe27b32d0300267c692f4caedb&pid=1-s2.0-S0361923024001655-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research Bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0361923024001655\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923024001655","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Buyang Huanwu Decoction suppresses ischemic stroke by suppressing glycolysis and cell apoptosis in rat brain microvascular endothelial cells
Background
Buyang Huanwu Decoction (BHD) is widely used in Chinese clinical practice for the treatment and prevention of ischemic cerebral vascular diseases. This study was designed to investigate the effects of BHD on ischemic stroke (IS) and its underlying mechanism.
Methods
The middle cerebral artery occlusion (MCAO) rat model and oxygen-glucose deprivation and reoxygenation (OGD/R) rat brain microvascular endothelial cell (RBMVEC) models were established. Brain infarction size and neurological score were calculated following MCAO surgery. Evans blue was used to measure blood brain barrier (BBB) permeability. Cell counting kit-8 (CCK-8) and TUNEL assays were performed to evaluate the cell viability and apoptosis of RBMVECs. Dual-luciferase reporter assay was used to analyze the transcriptional activities of apoptosis-related genes.
Results
Results showed that higher infarction volume, neurological scores, and BBB permeability in the MCAO group rats were reduced after BHD treatment. Drug serum (DS) treatment had no impact on the normal RBMVECs’ cell viability and cell apoptosis. Besides, DS treatment decreased the lactate production, glucose uptake, and extracellular acidification rate in normal and OGD/R-induced RBMVECs. DS treatment downregulated the protein levels of pan-lysine lactylation (kla), histone H3 lysine 18 lactylation (H3K18la), and the transcriptional of apoptotic protease activating factor-1 (Apaf-1) in OGD/R-treated RBMVECs. In addition, Apaf-1 overexpression decreased cell viability and increased apoptosis and glycolysis activity of OGD/R-treated RBMVECs.
Conclusion
In summary, BHD inhibited glycolysis and apoptosis via suppressing the pan-kla and H3K18la protein levels and the Apaf-1 transcriptional activity, thus restraining the progression of IS.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.