保留节数对甘蔗修剪长相思浆果成熟度和产量成分的影响

IF 2.2 3区 农林科学 Q3 FOOD SCIENCE & TECHNOLOGY OENO One Pub Date : 2024-07-16 DOI:10.20870/oeno-one.2024.58.3.7930
P.T.M. Epee, Olaf Schelezki, M. Trought, Armin Werner, Rainer W. Hofmann, Peter Almond, Stuart Charters, Amber Parker
{"title":"保留节数对甘蔗修剪长相思浆果成熟度和产量成分的影响","authors":"P.T.M. Epee, Olaf Schelezki, M. Trought, Armin Werner, Rainer W. Hofmann, Peter Almond, Stuart Charters, Amber Parker","doi":"10.20870/oeno-one.2024.58.3.7930","DOIUrl":null,"url":null,"abstract":"\n Cane pruning is used in most New Zealand Sauvignon blanc vineyards to manage yield, vine balance (relationship between vegetative growth and fruit growth) and fruit primary and secondary metabolites. The source–sink ratio (TLA/FM—total leaf area to fruit mass or ELA/FM—exposed leaf area to fruit mass), the fruit mass to pruning mass (FM/PM), the fruit mass to cane mass (FM/CM) and fruit composition provide an assessment of the vine performance and balance. The interpretation of these metrics (i.e., TLA/FM, ELA/FM, FM/PM, FM/CM) requires their comparison with known optimal ranges specific to cultivars, locations and growing conditions. More often, such context- and cultivar-specific optimal ranges do not exist, thus warranting research to investigate them. To understand the influence of retained node numbers on the vegetative and fruit development of Sauvignon blanc, grapevines were pruned across three vineyard sites (two in Marlborough—Site 1 and 2, and one in Waipara—Site 3) over two growing seasons, retaining 10, 20, 30, 40 and 50 nodes on one to four canes (each cane carrying ten nodes, with 50-node vines carrying on average 12.5 nodes on each of the four canes). The accumulation of soluble solids (TSS) generally increased at lower node numbers and vine yields, reflecting an increase in ELA/FM, with 50-node vines having the least TSS concentration at harvest. The average berry mass, titrable acidity (TA) and pH were unaffected by node numbers over the two seasons. A low source–sink ratio induced by high node numbers not only reduced the vine capacity to ripen the current crop but also reduced the following season’s bunch number per shoot (from 1.8 to 1.6 bunches per shoot; p < 0.05), average bunch mass (from 82.0 ± 6 g to 67.7 ± 3 g; p < 0.01) and bunch mass per shoot (from 153.5 ± 15 g to 106.7 ± 9 g; p < 0.05). When compared to 50-node vines, 10-node vines had a two-fold increase in the average cane mass (from 30.1 ± 3.9 g to 69.2 ± 8.7 g; p < 0.001) and average old cane mass (from 82.4 ± 6.9 g to 163.8 ± 21 g; p < 0.001). The ELA/FM and TLA/FM required for optimal TSS accumulation were 0.75 m2 kg-1 and 2.0 m2 kg-1, respectively, across all sites. A source–sink ratio above these values resulted in high average cane mass and average old cane mass (an indication of excess vigour), while lower values indicated reduced vigour and slowed TSS accumulation. This research provides useful optimal ranges to compare and interpret vine balance metrics measured at those sites.\n","PeriodicalId":19510,"journal":{"name":"OENO One","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of retained node numbers on berry maturity and yield components of cane-pruned Sauvignon blanc\",\"authors\":\"P.T.M. Epee, Olaf Schelezki, M. Trought, Armin Werner, Rainer W. Hofmann, Peter Almond, Stuart Charters, Amber Parker\",\"doi\":\"10.20870/oeno-one.2024.58.3.7930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Cane pruning is used in most New Zealand Sauvignon blanc vineyards to manage yield, vine balance (relationship between vegetative growth and fruit growth) and fruit primary and secondary metabolites. The source–sink ratio (TLA/FM—total leaf area to fruit mass or ELA/FM—exposed leaf area to fruit mass), the fruit mass to pruning mass (FM/PM), the fruit mass to cane mass (FM/CM) and fruit composition provide an assessment of the vine performance and balance. The interpretation of these metrics (i.e., TLA/FM, ELA/FM, FM/PM, FM/CM) requires their comparison with known optimal ranges specific to cultivars, locations and growing conditions. More often, such context- and cultivar-specific optimal ranges do not exist, thus warranting research to investigate them. To understand the influence of retained node numbers on the vegetative and fruit development of Sauvignon blanc, grapevines were pruned across three vineyard sites (two in Marlborough—Site 1 and 2, and one in Waipara—Site 3) over two growing seasons, retaining 10, 20, 30, 40 and 50 nodes on one to four canes (each cane carrying ten nodes, with 50-node vines carrying on average 12.5 nodes on each of the four canes). The accumulation of soluble solids (TSS) generally increased at lower node numbers and vine yields, reflecting an increase in ELA/FM, with 50-node vines having the least TSS concentration at harvest. The average berry mass, titrable acidity (TA) and pH were unaffected by node numbers over the two seasons. A low source–sink ratio induced by high node numbers not only reduced the vine capacity to ripen the current crop but also reduced the following season’s bunch number per shoot (from 1.8 to 1.6 bunches per shoot; p < 0.05), average bunch mass (from 82.0 ± 6 g to 67.7 ± 3 g; p < 0.01) and bunch mass per shoot (from 153.5 ± 15 g to 106.7 ± 9 g; p < 0.05). When compared to 50-node vines, 10-node vines had a two-fold increase in the average cane mass (from 30.1 ± 3.9 g to 69.2 ± 8.7 g; p < 0.001) and average old cane mass (from 82.4 ± 6.9 g to 163.8 ± 21 g; p < 0.001). The ELA/FM and TLA/FM required for optimal TSS accumulation were 0.75 m2 kg-1 and 2.0 m2 kg-1, respectively, across all sites. A source–sink ratio above these values resulted in high average cane mass and average old cane mass (an indication of excess vigour), while lower values indicated reduced vigour and slowed TSS accumulation. This research provides useful optimal ranges to compare and interpret vine balance metrics measured at those sites.\\n\",\"PeriodicalId\":19510,\"journal\":{\"name\":\"OENO One\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OENO One\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.20870/oeno-one.2024.58.3.7930\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OENO One","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.20870/oeno-one.2024.58.3.7930","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大多数新西兰长相思葡萄园都采用甘蔗修剪来管理产量、葡萄树平衡(植株生长和果实生长之间的关系)以及果实的初级和次级代谢物。源-汇比率(TLA/FM-总叶面积-果实质量或ELA/FM-暴露叶面积-果实质量)、果实质量-修剪质量(FM/PM)、果实质量-甘蔗质量(FM/CM)和果实成分可以评估葡萄树的表现和平衡。要解释这些指标(即 TLA/FM、ELA/FM、FM/PM、FM/CM),需要将其与栽培品种、地点和生长条件的已知最佳范围进行比较。更常见的情况是,这种针对具体环境和栽培品种的最佳范围并不存在,因此需要对其进行研究。为了了解保留节数对长相思植株和果实发育的影响,我们在三个葡萄园(两个在马尔堡--1 号和 2 号地,一个在怀帕拉--3 号地)的两个生长季节对葡萄藤进行了修剪,在一到四根藤上分别保留了 10、20、30、40 和 50 个节数(每根藤上有 10 个节数,50 节数的葡萄藤在四根藤上平均各有 12.5 个节数)。在节数和产量较低时,可溶性固形物(TSS)的累积量普遍增加,这反映了 ELA/FM 的增加,其中 50 节葡萄藤在收获时的 TSS 浓度最低。两个季节的平均浆果质量、滴定酸度(TA)和 pH 值不受节数的影响。高节数导致的低源汇比不仅降低了葡萄树成熟当季作物的能力,还减少了下一季的每枝串数(从 1.8 降至 1.6;p < 0.05)、平均串重(从 82.0 ± 6 克降至 67.7 ± 3 克;p < 0.01)和每枝串重(从 153.5 ± 15 克降至 106.7 ± 9 克;p < 0.05)。与 50 节蔓相比,10 节蔓的平均甘蔗质量(从 30.1 ± 3.9 g 增加到 69.2 ± 8.7 g;p < 0.001)和平均老蔗质量(从 82.4 ± 6.9 g 增加到 163.8 ± 21 g;p < 0.001)增加了两倍。所有地点 TSS 最佳积累所需的 ELA/FM 和 TLA/FM 分别为 0.75 m2 kg-1 和 2.0 m2 kg-1。源-汇比率高于这些值时,平均甘蔗质量和平均老蔗质量较高(表明活力过强),而低于这些值时,活力降低,TSS 积累速度减慢。这项研究为比较和解释这些地点测得的藤蔓平衡指标提供了有用的最佳范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of retained node numbers on berry maturity and yield components of cane-pruned Sauvignon blanc
Cane pruning is used in most New Zealand Sauvignon blanc vineyards to manage yield, vine balance (relationship between vegetative growth and fruit growth) and fruit primary and secondary metabolites. The source–sink ratio (TLA/FM—total leaf area to fruit mass or ELA/FM—exposed leaf area to fruit mass), the fruit mass to pruning mass (FM/PM), the fruit mass to cane mass (FM/CM) and fruit composition provide an assessment of the vine performance and balance. The interpretation of these metrics (i.e., TLA/FM, ELA/FM, FM/PM, FM/CM) requires their comparison with known optimal ranges specific to cultivars, locations and growing conditions. More often, such context- and cultivar-specific optimal ranges do not exist, thus warranting research to investigate them. To understand the influence of retained node numbers on the vegetative and fruit development of Sauvignon blanc, grapevines were pruned across three vineyard sites (two in Marlborough—Site 1 and 2, and one in Waipara—Site 3) over two growing seasons, retaining 10, 20, 30, 40 and 50 nodes on one to four canes (each cane carrying ten nodes, with 50-node vines carrying on average 12.5 nodes on each of the four canes). The accumulation of soluble solids (TSS) generally increased at lower node numbers and vine yields, reflecting an increase in ELA/FM, with 50-node vines having the least TSS concentration at harvest. The average berry mass, titrable acidity (TA) and pH were unaffected by node numbers over the two seasons. A low source–sink ratio induced by high node numbers not only reduced the vine capacity to ripen the current crop but also reduced the following season’s bunch number per shoot (from 1.8 to 1.6 bunches per shoot; p < 0.05), average bunch mass (from 82.0 ± 6 g to 67.7 ± 3 g; p < 0.01) and bunch mass per shoot (from 153.5 ± 15 g to 106.7 ± 9 g; p < 0.05). When compared to 50-node vines, 10-node vines had a two-fold increase in the average cane mass (from 30.1 ± 3.9 g to 69.2 ± 8.7 g; p < 0.001) and average old cane mass (from 82.4 ± 6.9 g to 163.8 ± 21 g; p < 0.001). The ELA/FM and TLA/FM required for optimal TSS accumulation were 0.75 m2 kg-1 and 2.0 m2 kg-1, respectively, across all sites. A source–sink ratio above these values resulted in high average cane mass and average old cane mass (an indication of excess vigour), while lower values indicated reduced vigour and slowed TSS accumulation. This research provides useful optimal ranges to compare and interpret vine balance metrics measured at those sites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
OENO One
OENO One Agricultural and Biological Sciences-Food Science
CiteScore
4.40
自引率
13.80%
发文量
85
审稿时长
13 weeks
期刊介绍: OENO One is a peer-reviewed journal that publishes original research, reviews, mini-reviews, short communications, perspectives and spotlights in the areas of viticulture, grapevine physiology, genomics and genetics, oenology, winemaking technology and processes, wine chemistry and quality, analytical chemistry, microbiology, sensory and consumer sciences, safety and health. OENO One belongs to the International Viticulture and Enology Society - IVES, an academic association dedicated to viticulture and enology.
期刊最新文献
Protection of viticultural biodiversity: genetic and phenotypic characterisation of grapevine varieties from the northwest coastal area of Tuscany (Italy) Maceration duration and grape variety: key factors in phenolic compound enrichment of Montenegrin red wine Effects of retained node numbers on berry maturity and yield components of cane-pruned Sauvignon blanc A comprehensive study on the effect of foliar mineral treatments on grapevine epiphytic microorganisms, flavonoid gene expression, and berry composition Mass Spectrometry Imaging to map metabolites in plant-microbe interactions: grapevine as a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1