氩离子辐照对 WS2 单层电传输的影响

Bhumit Luhar, D. Thakur, B. R. Naik, V. Balakrishnan
{"title":"氩离子辐照对 WS2 单层电传输的影响","authors":"Bhumit Luhar, D. Thakur, B. R. Naik, V. Balakrishnan","doi":"10.1088/1361-6463/ad5f3e","DOIUrl":null,"url":null,"abstract":"\n Two-dimensional transition metal dichalcogenides (2D-TMDs), such as WS2 and MoS2, have attracted exceptional attention as promising materials for future optoelectronic systems due to their unique properties, including a direct band gap, high quantum efficiency, and flexibility. However, exploiting these materials’ potential in their pristine state remains a key challenge because of limited tunability and control over their properties. The introduction of crystal defects, such as vacancies and dopants, induces localized mid-gap states in 2D materials, enhances electrical transport, and creates a platform for tuning and exploiting these materials for practical applications. Our study explores the effect of Ar-ion beam irradiation on monolayer WS2, resulting in enhanced electrical transport compared to the pristine sample. We regulated the Ar-ion bombardment energy to vary the defect concentration from 0.1 to 0.5 keV. Photoluminescence (PL) and Raman investigations, revealed the extent of damage to the material. At the same time, x-ray photoelectron spectroscopy showed changes in the oxidation state with increasing irradiation energy. Our results demonstrated that Ar-ion treatment at low-energy irradiation enhanced electrical transport by ∼12 fold compared to pristine till 0.2 keV of irradiation by incorporating defects. However, higher irradiation energies reduced electrical transport due to increased disorder in the WS2 monolayer. This investigation highlights the potential for controlled defect engineering to optimize the properties of 2D-TMDs for practical applications.","PeriodicalId":507822,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Ar-ion irradiation on electrical transport of WS2 monolayer\",\"authors\":\"Bhumit Luhar, D. Thakur, B. R. Naik, V. Balakrishnan\",\"doi\":\"10.1088/1361-6463/ad5f3e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Two-dimensional transition metal dichalcogenides (2D-TMDs), such as WS2 and MoS2, have attracted exceptional attention as promising materials for future optoelectronic systems due to their unique properties, including a direct band gap, high quantum efficiency, and flexibility. However, exploiting these materials’ potential in their pristine state remains a key challenge because of limited tunability and control over their properties. The introduction of crystal defects, such as vacancies and dopants, induces localized mid-gap states in 2D materials, enhances electrical transport, and creates a platform for tuning and exploiting these materials for practical applications. Our study explores the effect of Ar-ion beam irradiation on monolayer WS2, resulting in enhanced electrical transport compared to the pristine sample. We regulated the Ar-ion bombardment energy to vary the defect concentration from 0.1 to 0.5 keV. Photoluminescence (PL) and Raman investigations, revealed the extent of damage to the material. At the same time, x-ray photoelectron spectroscopy showed changes in the oxidation state with increasing irradiation energy. Our results demonstrated that Ar-ion treatment at low-energy irradiation enhanced electrical transport by ∼12 fold compared to pristine till 0.2 keV of irradiation by incorporating defects. However, higher irradiation energies reduced electrical transport due to increased disorder in the WS2 monolayer. This investigation highlights the potential for controlled defect engineering to optimize the properties of 2D-TMDs for practical applications.\",\"PeriodicalId\":507822,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad5f3e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad5f3e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二维过渡金属二掺杂物(2D-TMDs),如 WS2 和 MoS2,由于其独特的性能,包括直接带隙、高量子效率和灵活性,作为未来光电系统的有前途的材料,已经引起了广泛的关注。然而,由于对这些材料特性的可调节性和控制能力有限,如何在原始状态下开发这些材料的潜力仍然是一个关键挑战。晶体缺陷(如空位和掺杂剂)的引入可诱导二维材料中的局部中隙态,增强电传输,并为调谐和利用这些材料的实际应用创建一个平台。我们的研究探讨了氩离子束辐照对单层 WS2 的影响,与原始样品相比,氩离子束辐照增强了 WS2 的电传输。我们调节氩离子轰击能量,使缺陷浓度在 0.1 至 0.5 千伏之间变化。光致发光(PL)和拉曼研究揭示了材料的损坏程度。同时,X 射线光电子能谱显示了氧化态随着辐照能量的增加而发生的变化。我们的研究结果表明,在低能量辐照下进行氩离子处理后,与原始材料相比,直到 0.2 keV 的辐照能量时,掺入缺陷的电传输增强了 12 倍。然而,辐照能量越高,WS2 单层中的无序度越高,电传输就越低。这项研究凸显了受控缺陷工程在优化二维-TMDs 性能以实现实际应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Ar-ion irradiation on electrical transport of WS2 monolayer
Two-dimensional transition metal dichalcogenides (2D-TMDs), such as WS2 and MoS2, have attracted exceptional attention as promising materials for future optoelectronic systems due to their unique properties, including a direct band gap, high quantum efficiency, and flexibility. However, exploiting these materials’ potential in their pristine state remains a key challenge because of limited tunability and control over their properties. The introduction of crystal defects, such as vacancies and dopants, induces localized mid-gap states in 2D materials, enhances electrical transport, and creates a platform for tuning and exploiting these materials for practical applications. Our study explores the effect of Ar-ion beam irradiation on monolayer WS2, resulting in enhanced electrical transport compared to the pristine sample. We regulated the Ar-ion bombardment energy to vary the defect concentration from 0.1 to 0.5 keV. Photoluminescence (PL) and Raman investigations, revealed the extent of damage to the material. At the same time, x-ray photoelectron spectroscopy showed changes in the oxidation state with increasing irradiation energy. Our results demonstrated that Ar-ion treatment at low-energy irradiation enhanced electrical transport by ∼12 fold compared to pristine till 0.2 keV of irradiation by incorporating defects. However, higher irradiation energies reduced electrical transport due to increased disorder in the WS2 monolayer. This investigation highlights the potential for controlled defect engineering to optimize the properties of 2D-TMDs for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanical properties and cage transformations in CO2-CH4 heterohydrates: a molecular dynamics and machine learning study Reconfigurable narrow-band bandpass filter using electrically-coupled open-loop resonators based on liquid crystals Controllable location-dependent frequency conversion based on space-time transformation optics On-chip photonic digital-to-analog converter by phase-change-based bit control Spontaneous Anomalous Hall effects in magnetic and non-magnetic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1