{"title":"基于深度学习的动画视频图像数据异常检测与识别算法","authors":"Cheng Li, Qiguang Qian","doi":"10.4018/joeuc.345929","DOIUrl":null,"url":null,"abstract":"Anomaly detection plays a crucial role in the field of machine learning, as it involves constructing detection models capable of identifying abnormal samples that deviate from expected patterns, using unlabeled or normal samples. In recent years, there has been a growing interest in integrating anomaly detection into image processing to tackle challenges related to target detection, particularly when dealing with limited sample availability. This paper introduces a novel fully connected network model enhanced with a memory augmentation mechanism. By harnessing the comprehensive feature capabilities of the fully connected network, this model effectively complements the representation capabilities of convolutional neural networks. Additionally, it incorporates a memory module to retain knowledge of normal patterns, thereby enhancing the performance of existing models for video anomaly detection. Furthermore, we present a video anomaly detection system designed to identify abnormal image data within surveillance videos, leveraging the innovative network architecture described above.","PeriodicalId":504311,"journal":{"name":"Journal of Organizational and End User Computing","volume":"11 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Learning-Based Animation Video Image Data Anomaly Detection and Recognition Algorithm\",\"authors\":\"Cheng Li, Qiguang Qian\",\"doi\":\"10.4018/joeuc.345929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly detection plays a crucial role in the field of machine learning, as it involves constructing detection models capable of identifying abnormal samples that deviate from expected patterns, using unlabeled or normal samples. In recent years, there has been a growing interest in integrating anomaly detection into image processing to tackle challenges related to target detection, particularly when dealing with limited sample availability. This paper introduces a novel fully connected network model enhanced with a memory augmentation mechanism. By harnessing the comprehensive feature capabilities of the fully connected network, this model effectively complements the representation capabilities of convolutional neural networks. Additionally, it incorporates a memory module to retain knowledge of normal patterns, thereby enhancing the performance of existing models for video anomaly detection. Furthermore, we present a video anomaly detection system designed to identify abnormal image data within surveillance videos, leveraging the innovative network architecture described above.\",\"PeriodicalId\":504311,\"journal\":{\"name\":\"Journal of Organizational and End User Computing\",\"volume\":\"11 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organizational and End User Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/joeuc.345929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/joeuc.345929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Deep Learning-Based Animation Video Image Data Anomaly Detection and Recognition Algorithm
Anomaly detection plays a crucial role in the field of machine learning, as it involves constructing detection models capable of identifying abnormal samples that deviate from expected patterns, using unlabeled or normal samples. In recent years, there has been a growing interest in integrating anomaly detection into image processing to tackle challenges related to target detection, particularly when dealing with limited sample availability. This paper introduces a novel fully connected network model enhanced with a memory augmentation mechanism. By harnessing the comprehensive feature capabilities of the fully connected network, this model effectively complements the representation capabilities of convolutional neural networks. Additionally, it incorporates a memory module to retain knowledge of normal patterns, thereby enhancing the performance of existing models for video anomaly detection. Furthermore, we present a video anomaly detection system designed to identify abnormal image data within surveillance videos, leveraging the innovative network architecture described above.