{"title":"开发和评估姜黄素囊状载体:配方变量的影响","authors":"D. Momekova, Viliana Gugleva, Petar Petrov","doi":"10.3897/pharmacia.71.e127997","DOIUrl":null,"url":null,"abstract":"Vesicular carriers are a well-established approach to improving the technological and biopharmaceutical characteristics of the loaded cargo. The current manuscript is focused on the development and evaluation in a comparative aspect of two types of vesicles—ethosomes and transfersomes loaded with the phytoconstituent curcumin. The formulation variables affecting their physiochemical and cytotoxic properties are outlined as well. A series of ethosomes and transfersomes based on Lipoid S75 and ethanol, or edge activator, were prepared using the thin film hydration method and subjected to comprehensive evaluation by dynamic light scattering (DLS) analysis, transmission electron microscopy (TEM), entrapment efficiency evaluation, in vitro release, and cytotoxicity studies. Ethosomes based on Lipoid S75 (4% w/w) and ethanol (30% v/v) showed suitable physicochemical characteristics (hydrodynamic diameter of 578.6 nm, monomodal size distribution, high curcumin entrapment efficiency (78.2%)), and superior antiproliferative activity compared to free drug and transfersomal nanocarriers.","PeriodicalId":508564,"journal":{"name":"Pharmacia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and evaluation of curcumin-loaded vesicular carriers: impact of formulation variables\",\"authors\":\"D. Momekova, Viliana Gugleva, Petar Petrov\",\"doi\":\"10.3897/pharmacia.71.e127997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vesicular carriers are a well-established approach to improving the technological and biopharmaceutical characteristics of the loaded cargo. The current manuscript is focused on the development and evaluation in a comparative aspect of two types of vesicles—ethosomes and transfersomes loaded with the phytoconstituent curcumin. The formulation variables affecting their physiochemical and cytotoxic properties are outlined as well. A series of ethosomes and transfersomes based on Lipoid S75 and ethanol, or edge activator, were prepared using the thin film hydration method and subjected to comprehensive evaluation by dynamic light scattering (DLS) analysis, transmission electron microscopy (TEM), entrapment efficiency evaluation, in vitro release, and cytotoxicity studies. Ethosomes based on Lipoid S75 (4% w/w) and ethanol (30% v/v) showed suitable physicochemical characteristics (hydrodynamic diameter of 578.6 nm, monomodal size distribution, high curcumin entrapment efficiency (78.2%)), and superior antiproliferative activity compared to free drug and transfersomal nanocarriers.\",\"PeriodicalId\":508564,\"journal\":{\"name\":\"Pharmacia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/pharmacia.71.e127997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/pharmacia.71.e127997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development and evaluation of curcumin-loaded vesicular carriers: impact of formulation variables
Vesicular carriers are a well-established approach to improving the technological and biopharmaceutical characteristics of the loaded cargo. The current manuscript is focused on the development and evaluation in a comparative aspect of two types of vesicles—ethosomes and transfersomes loaded with the phytoconstituent curcumin. The formulation variables affecting their physiochemical and cytotoxic properties are outlined as well. A series of ethosomes and transfersomes based on Lipoid S75 and ethanol, or edge activator, were prepared using the thin film hydration method and subjected to comprehensive evaluation by dynamic light scattering (DLS) analysis, transmission electron microscopy (TEM), entrapment efficiency evaluation, in vitro release, and cytotoxicity studies. Ethosomes based on Lipoid S75 (4% w/w) and ethanol (30% v/v) showed suitable physicochemical characteristics (hydrodynamic diameter of 578.6 nm, monomodal size distribution, high curcumin entrapment efficiency (78.2%)), and superior antiproliferative activity compared to free drug and transfersomal nanocarriers.