用于复合多孔流体系统湍流重构的物理信息神经网络

Seohee Jang, Mohammad Jadidi, Saleh Rezaeiravesh, Alistair Revell, Yasser Mahmoudi Larimi
{"title":"用于复合多孔流体系统湍流重构的物理信息神经网络","authors":"Seohee Jang, Mohammad Jadidi, Saleh Rezaeiravesh, Alistair Revell, Yasser Mahmoudi Larimi","doi":"10.1088/2632-2153/ad63f4","DOIUrl":null,"url":null,"abstract":"\n This study explores the implementation of Physics-Informed Neural Networks (PINN) to analyze turbulent flow in composite porous-fluid systems. These systems are composed of a fluid-saturated porous medium and an adjacent fluid, where the flow properties are exchanged across the porous-fluid interface. The PINN model employs a novel approach combining supervised learning and enforces fidelity to flow physics through penalization by the Reynolds-Averaged Navier-Stokes (RANS) equations. Two cases were simulated for this purpose: solid block, i.e., porous media with zero porosity, and porous block with a defined porosity. The effect of providing internal training data on the accuracy of the PINN predictions for prominent flow features including leakage, channeling effect and wake recirculation were investigated. Additionally, L2 norm error, which evaluates the prediction accuracy for flow variables was studied. Furthermore, PINN training time in both cases with internal training data were considered in this study. The results showed that the PINN predictions achieved high accuracy for the prominent flow features compared to the reference RANS data. In addition, second-order internal training data in the wall-normal direction reduced the L2 norm error by 100% for the solid block case, while for the porous block case, providing training data at the porous-fluid interface, increased the prediction accuracy by nearly 40% for second-order statistics. The study elucidates the impact of the internal training data distribution on the PINN training in complex turbulent flow dynamics, underscoring the necessity of turbulent second-order statistics variables in PINN training and an additional velocity gradient treatment to enhance PINN prediction.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-Informed Neural Network for Turbulent Flow Reconstruction in Composite Porous-Fluid Systems\",\"authors\":\"Seohee Jang, Mohammad Jadidi, Saleh Rezaeiravesh, Alistair Revell, Yasser Mahmoudi Larimi\",\"doi\":\"10.1088/2632-2153/ad63f4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study explores the implementation of Physics-Informed Neural Networks (PINN) to analyze turbulent flow in composite porous-fluid systems. These systems are composed of a fluid-saturated porous medium and an adjacent fluid, where the flow properties are exchanged across the porous-fluid interface. The PINN model employs a novel approach combining supervised learning and enforces fidelity to flow physics through penalization by the Reynolds-Averaged Navier-Stokes (RANS) equations. Two cases were simulated for this purpose: solid block, i.e., porous media with zero porosity, and porous block with a defined porosity. The effect of providing internal training data on the accuracy of the PINN predictions for prominent flow features including leakage, channeling effect and wake recirculation were investigated. Additionally, L2 norm error, which evaluates the prediction accuracy for flow variables was studied. Furthermore, PINN training time in both cases with internal training data were considered in this study. The results showed that the PINN predictions achieved high accuracy for the prominent flow features compared to the reference RANS data. In addition, second-order internal training data in the wall-normal direction reduced the L2 norm error by 100% for the solid block case, while for the porous block case, providing training data at the porous-fluid interface, increased the prediction accuracy by nearly 40% for second-order statistics. The study elucidates the impact of the internal training data distribution on the PINN training in complex turbulent flow dynamics, underscoring the necessity of turbulent second-order statistics variables in PINN training and an additional velocity gradient treatment to enhance PINN prediction.\",\"PeriodicalId\":503691,\"journal\":{\"name\":\"Machine Learning: Science and Technology\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning: Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad63f4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad63f4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了如何利用物理信息神经网络(PINN)分析多孔流体复合系统中的湍流。这些系统由流体饱和的多孔介质和相邻流体组成,流动特性在多孔-流体界面上进行交换。PINN 模型采用了一种结合监督学习的新方法,并通过雷诺平均纳维-斯托克斯(RANS)方程的惩罚来强化流动物理的保真度。为此模拟了两种情况:固体块(即孔隙率为零的多孔介质)和具有确定孔隙率的多孔块。研究了提供内部训练数据对 PINN 预测泄漏、通道效应和尾流再循环等主要流动特征的准确性的影响。此外,还研究了评估流动变量预测精度的 L2 准则误差。此外,本研究还考虑了两种情况下使用内部训练数据的 PINN 训练时间。结果表明,与参考 RANS 数据相比,PINN 预测在突出的流动特征方面达到了很高的精度。此外,在实心块体情况下,壁面法线方向的二阶内部训练数据可将 L2 norm 误差降低 100%;而在多孔块体情况下,在多孔-流体界面提供训练数据可将二阶统计的预测精度提高近 40%。该研究阐明了复杂湍流动力学中内部训练数据分布对 PINN 训练的影响,强调了 PINN 训练中湍流二阶统计变量的必要性,以及额外的速度梯度处理对增强 PINN 预测的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physics-Informed Neural Network for Turbulent Flow Reconstruction in Composite Porous-Fluid Systems
This study explores the implementation of Physics-Informed Neural Networks (PINN) to analyze turbulent flow in composite porous-fluid systems. These systems are composed of a fluid-saturated porous medium and an adjacent fluid, where the flow properties are exchanged across the porous-fluid interface. The PINN model employs a novel approach combining supervised learning and enforces fidelity to flow physics through penalization by the Reynolds-Averaged Navier-Stokes (RANS) equations. Two cases were simulated for this purpose: solid block, i.e., porous media with zero porosity, and porous block with a defined porosity. The effect of providing internal training data on the accuracy of the PINN predictions for prominent flow features including leakage, channeling effect and wake recirculation were investigated. Additionally, L2 norm error, which evaluates the prediction accuracy for flow variables was studied. Furthermore, PINN training time in both cases with internal training data were considered in this study. The results showed that the PINN predictions achieved high accuracy for the prominent flow features compared to the reference RANS data. In addition, second-order internal training data in the wall-normal direction reduced the L2 norm error by 100% for the solid block case, while for the porous block case, providing training data at the porous-fluid interface, increased the prediction accuracy by nearly 40% for second-order statistics. The study elucidates the impact of the internal training data distribution on the PINN training in complex turbulent flow dynamics, underscoring the necessity of turbulent second-order statistics variables in PINN training and an additional velocity gradient treatment to enhance PINN prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Benefit of Attention in Inverse Design of Thin Films Filters Predictive Models for Inorganic Materials Thermoelectric Properties with Machine Learning Benchmarking machine learning interatomic potentials via phonon anharmonicity Application of Deep Learning-based Fuzzy Systems to Analyze the Overall Risk of Mortality in Glioblastoma Multiforme Formation Energy Prediction of Neutral Single-Atom Impurities in 2D Materials using Tree-based Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1