肌动蛋白动力学维持粘附细胞膜张力的空间梯度

bioRxiv Pub Date : 2024-07-16 DOI:10.1101/2024.07.15.603517
J. M. García-Arcos, Amine Mehidi, Julissa Sánchez Velázquez, Pau Guillamat, C. Tomba, Laura Houzet, L. Capolupo, Giovanni D’Angelo, Adai Colom, Elizabeth Hinde, Charlotte Aumeier, Aurélien Roux
{"title":"肌动蛋白动力学维持粘附细胞膜张力的空间梯度","authors":"J. M. García-Arcos, Amine Mehidi, Julissa Sánchez Velázquez, Pau Guillamat, C. Tomba, Laura Houzet, L. Capolupo, Giovanni D’Angelo, Adai Colom, Elizabeth Hinde, Charlotte Aumeier, Aurélien Roux","doi":"10.1101/2024.07.15.603517","DOIUrl":null,"url":null,"abstract":"Tension propagates extremely fast in lipid bilayers, precluding the formation of tension gradients. Nevertheless, plasma membrane tension gradients have been evidenced in migrating cells and along axons. Here, using a fluorescent membrane tension probe, we show that membrane tension gradients exist in all adherent cells, whether they migrate or not. Non-adhering cells do not display tension gradients. We further show that branched actin increases tension, while membrane-to-cortex attachments facilitate its propagation. Tension is the lowest at the edge of adhesion sites and highest at protrusions, setting the boundaries of the tension gradients. By providing a quantitative and mechanistic basis behind the organization of membrane tension gradients, our work explains how they are actively sustained in adherent cells.","PeriodicalId":9124,"journal":{"name":"bioRxiv","volume":"60 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Actin dynamics sustains spatial gradients of membrane tension in adherent cells\",\"authors\":\"J. M. García-Arcos, Amine Mehidi, Julissa Sánchez Velázquez, Pau Guillamat, C. Tomba, Laura Houzet, L. Capolupo, Giovanni D’Angelo, Adai Colom, Elizabeth Hinde, Charlotte Aumeier, Aurélien Roux\",\"doi\":\"10.1101/2024.07.15.603517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tension propagates extremely fast in lipid bilayers, precluding the formation of tension gradients. Nevertheless, plasma membrane tension gradients have been evidenced in migrating cells and along axons. Here, using a fluorescent membrane tension probe, we show that membrane tension gradients exist in all adherent cells, whether they migrate or not. Non-adhering cells do not display tension gradients. We further show that branched actin increases tension, while membrane-to-cortex attachments facilitate its propagation. Tension is the lowest at the edge of adhesion sites and highest at protrusions, setting the boundaries of the tension gradients. By providing a quantitative and mechanistic basis behind the organization of membrane tension gradients, our work explains how they are actively sustained in adherent cells.\",\"PeriodicalId\":9124,\"journal\":{\"name\":\"bioRxiv\",\"volume\":\"60 18\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.15.603517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.15.603517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

张力在脂质双层膜中的传播速度极快,因此无法形成张力梯度。然而,在迁移细胞和轴突上已经证明了质膜张力梯度。在这里,我们使用荧光膜张力探针证明,无论细胞是否迁移,所有粘附细胞中都存在膜张力梯度。非粘附细胞不显示张力梯度。我们进一步发现,分枝肌动蛋白会增加张力,而膜与皮层的附着会促进张力的传播。粘附点边缘的张力最低,突起处的张力最高,从而确定了张力梯度的边界。通过提供膜张力梯度组织背后的定量和机理基础,我们的工作解释了如何在粘附细胞中积极维持膜张力梯度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Actin dynamics sustains spatial gradients of membrane tension in adherent cells
Tension propagates extremely fast in lipid bilayers, precluding the formation of tension gradients. Nevertheless, plasma membrane tension gradients have been evidenced in migrating cells and along axons. Here, using a fluorescent membrane tension probe, we show that membrane tension gradients exist in all adherent cells, whether they migrate or not. Non-adhering cells do not display tension gradients. We further show that branched actin increases tension, while membrane-to-cortex attachments facilitate its propagation. Tension is the lowest at the edge of adhesion sites and highest at protrusions, setting the boundaries of the tension gradients. By providing a quantitative and mechanistic basis behind the organization of membrane tension gradients, our work explains how they are actively sustained in adherent cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DGTS overproduced in seed plants is excluded from plastid membranes and promotes endomembrane expansion A distant TANGO1 family member promotes vitellogenin export from the ER in C. elegans Diet-induced obesity mediated through Estrogen-Related Receptor α is independent of intestinal function The Rbfox1/LASR complex controls alternative pre-mRNA splicing by recognition of multi-part RNA regulatory modules The Once and Future Fish: 1300 years of Atlantic herring population structure and demography revealed through ancient DNA and mixed-stock analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1