商用塔拉蛋白:功能特性及用于稳定超声波获得的沙棘油乳剂

IF 1 Q3 AGRICULTURE, DAIRY & ANIMAL SCIENCE Scientia Agropecuaria Pub Date : 2024-07-16 DOI:10.17268/sci.agropecu.2024.031
Jhajaira Angelitha Sulca-Vásquez, Eliana Marcela Vélez-Erazo, José Luis Pasquel‐Reátegui, O. W. Mendieta-Taboada
{"title":"商用塔拉蛋白:功能特性及用于稳定超声波获得的沙棘油乳剂","authors":"Jhajaira Angelitha Sulca-Vásquez, Eliana Marcela Vélez-Erazo, José Luis Pasquel‐Reátegui, O. W. Mendieta-Taboada","doi":"10.17268/sci.agropecu.2024.031","DOIUrl":null,"url":null,"abstract":"Commercial tara protein (CTP) and sacha inchi oil are promising Peruvian products for forming food emulsions. The present work aimed (1) to characterize the functional properties of CTP as a new protein source (water and oil absorption, foam, and gelling capacity) and (2) to deepen the CTP to form sacha inchi oil emulsions. The CTP (2%, 4%, 6%) and oil concentration (15%, 20% and 25%) were evaluated for rotor-stator (RS) emulsion production. Final emulsions (RS-US) were produced with RS emulsions added with 2% tara gum and ultrasound homogenization at 75% power amplitude for 3 min. Emulsions were analyzed according to gravitational stability, droplet size, and optical microscopy. The results showed that the CTP presented a centesimal composition of 6.03% moisture, 45.16% proteins, 12.32% lipids, 2.49% fiber, 6.04% ashes, and 27.96% carbohydrates. CTP had a greater oil absorption (2.1442 ±0.26 g/g solids) than water absorption (1.8201 ±0.02 g/g solids), did not present foam formation, and the least gelation concentration was 18%. RS-US emulsions prepared with 25% oil and 2% or 4% protein had greater stability against the creaming index and phase separation during 4h, despite emulsion prepared with 15% oil presenting the lowest mean droplet size. In conclusion, the results show that commercial tara protein effectively prepared emulsions with a combined method (rotor-stator, ultrasound, and tara gum).","PeriodicalId":21642,"journal":{"name":"Scientia Agropecuaria","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commercial Tara Protein: Functional properties and use to stabilize sacha inchi oil emulsions obtained by ultrasound\",\"authors\":\"Jhajaira Angelitha Sulca-Vásquez, Eliana Marcela Vélez-Erazo, José Luis Pasquel‐Reátegui, O. W. Mendieta-Taboada\",\"doi\":\"10.17268/sci.agropecu.2024.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Commercial tara protein (CTP) and sacha inchi oil are promising Peruvian products for forming food emulsions. The present work aimed (1) to characterize the functional properties of CTP as a new protein source (water and oil absorption, foam, and gelling capacity) and (2) to deepen the CTP to form sacha inchi oil emulsions. The CTP (2%, 4%, 6%) and oil concentration (15%, 20% and 25%) were evaluated for rotor-stator (RS) emulsion production. Final emulsions (RS-US) were produced with RS emulsions added with 2% tara gum and ultrasound homogenization at 75% power amplitude for 3 min. Emulsions were analyzed according to gravitational stability, droplet size, and optical microscopy. The results showed that the CTP presented a centesimal composition of 6.03% moisture, 45.16% proteins, 12.32% lipids, 2.49% fiber, 6.04% ashes, and 27.96% carbohydrates. CTP had a greater oil absorption (2.1442 ±0.26 g/g solids) than water absorption (1.8201 ±0.02 g/g solids), did not present foam formation, and the least gelation concentration was 18%. RS-US emulsions prepared with 25% oil and 2% or 4% protein had greater stability against the creaming index and phase separation during 4h, despite emulsion prepared with 15% oil presenting the lowest mean droplet size. In conclusion, the results show that commercial tara protein effectively prepared emulsions with a combined method (rotor-stator, ultrasound, and tara gum).\",\"PeriodicalId\":21642,\"journal\":{\"name\":\"Scientia Agropecuaria\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Agropecuaria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17268/sci.agropecu.2024.031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Agropecuaria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17268/sci.agropecu.2024.031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

商用塔拉蛋白(CTP)和沙棘油是秘鲁很有前景的食品乳剂产品。本研究的目的是:(1) 描述 CTP 作为一种新蛋白源的功能特性(吸水性、吸油性、发泡性和胶凝性);(2) 深化 CTP 以形成沙棘油乳剂。在转子-定子(RS)乳液生产中,对 CTP(2%、4%、6%)和油浓度(15%、20% 和 25%)进行了评估。在 RS 乳液中加入 2% 的塔拉胶,以 75% 的功率振幅超声均质 3 分钟,生产出最终乳液(RS-US)。根据重力稳定性、液滴大小和光学显微镜对乳液进行了分析。结果表明,CTP 的最小成分为 6.03% 的水分、45.16% 的蛋白质、12.32% 的脂类、2.49% 的纤维、6.04% 的灰分和 27.96% 的碳水化合物。CTP 的吸油量(2.1442 ±0.26 克/克固体)大于吸水量(1.8201 ±0.02 克/克固体),不会产生泡沫,凝胶浓度最低为 18%。用 25% 的油和 2% 或 4% 的蛋白质制备的 RS-US 乳液在 4 小时内的起泡指数和相分离稳定性更高,尽管用 15% 的油制备的乳液的平均液滴尺寸最小。总之,研究结果表明,使用组合方法(转子-定子、超声波和塔拉胶)制备乳剂时,商品塔拉蛋白具有很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Commercial Tara Protein: Functional properties and use to stabilize sacha inchi oil emulsions obtained by ultrasound
Commercial tara protein (CTP) and sacha inchi oil are promising Peruvian products for forming food emulsions. The present work aimed (1) to characterize the functional properties of CTP as a new protein source (water and oil absorption, foam, and gelling capacity) and (2) to deepen the CTP to form sacha inchi oil emulsions. The CTP (2%, 4%, 6%) and oil concentration (15%, 20% and 25%) were evaluated for rotor-stator (RS) emulsion production. Final emulsions (RS-US) were produced with RS emulsions added with 2% tara gum and ultrasound homogenization at 75% power amplitude for 3 min. Emulsions were analyzed according to gravitational stability, droplet size, and optical microscopy. The results showed that the CTP presented a centesimal composition of 6.03% moisture, 45.16% proteins, 12.32% lipids, 2.49% fiber, 6.04% ashes, and 27.96% carbohydrates. CTP had a greater oil absorption (2.1442 ±0.26 g/g solids) than water absorption (1.8201 ±0.02 g/g solids), did not present foam formation, and the least gelation concentration was 18%. RS-US emulsions prepared with 25% oil and 2% or 4% protein had greater stability against the creaming index and phase separation during 4h, despite emulsion prepared with 15% oil presenting the lowest mean droplet size. In conclusion, the results show that commercial tara protein effectively prepared emulsions with a combined method (rotor-stator, ultrasound, and tara gum).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientia Agropecuaria
Scientia Agropecuaria AGRICULTURE, DAIRY & ANIMAL SCIENCE-
CiteScore
3.50
自引率
0.00%
发文量
27
审稿时长
12 weeks
期刊最新文献
Correlations, genetic and phenotypic parameters in quantitative and qualitative traits of Swietenia macrophylla in Ucayali, Peru Un Indicator values for food shelf life prediction: A review Commercial Tara Protein: Functional properties and use to stabilize sacha inchi oil emulsions obtained by ultrasound Influence of high Andean grasslands on landslide reduction in Peru A strategy to optimize soil phosphorus reserve: A study based on native maize of Mexico and genotype selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1