Anna G. Chetkova, Sergey N. Trukhan, Oleg N. Martyanov
{"title":"钒基卟啉:研究支撑催化剂氧化铝表面的高效自旋探针","authors":"Anna G. Chetkova, Sergey N. Trukhan, Oleg N. Martyanov","doi":"10.1007/s00723-024-01681-9","DOIUrl":null,"url":null,"abstract":"<div><p>The EPR method and vanadyl tetraphenylporphyrin complex (VOTPP) as a spin probe were employed to study the transformation of the γ-Al<sub>2</sub>O<sub>3</sub> surface during temperature treatment. It has been shown that VOTPP complex is stable at least up to a temperature of 450 °C and <span>\\({P}_{{\\text{O}}_{2}}\\)</span> ≲ 3 Pa. Four distinct forms of vanadyl complex were identified on the γ-Al<sub>2</sub>O<sub>3</sub> surface, depending on the annealing temperature. The intensity ratio between these forms, exhibiting significantly different spin-Hamiltonian parameters, depend on the degree of surface hydration, which in turn determines the ratio between sites with different acidity on the γ-Al<sub>2</sub>O<sub>3</sub> surface. It has been shown that VOTPP complex demonstrate reversible transitions between different adsorption forms on the alumina surface during dehydration/hydration cycles. The observed phenomenon can be explained by the coordination vanadyl spin probe along the axial axis to the surface centers of different polarity/acidity.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"55 10","pages":"1293 - 1306"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vanadyl Porphyrin: Efficient Spin Probe to Study the Alumina Surface of Supported Catalysts\",\"authors\":\"Anna G. Chetkova, Sergey N. Trukhan, Oleg N. Martyanov\",\"doi\":\"10.1007/s00723-024-01681-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The EPR method and vanadyl tetraphenylporphyrin complex (VOTPP) as a spin probe were employed to study the transformation of the γ-Al<sub>2</sub>O<sub>3</sub> surface during temperature treatment. It has been shown that VOTPP complex is stable at least up to a temperature of 450 °C and <span>\\\\({P}_{{\\\\text{O}}_{2}}\\\\)</span> ≲ 3 Pa. Four distinct forms of vanadyl complex were identified on the γ-Al<sub>2</sub>O<sub>3</sub> surface, depending on the annealing temperature. The intensity ratio between these forms, exhibiting significantly different spin-Hamiltonian parameters, depend on the degree of surface hydration, which in turn determines the ratio between sites with different acidity on the γ-Al<sub>2</sub>O<sub>3</sub> surface. It has been shown that VOTPP complex demonstrate reversible transitions between different adsorption forms on the alumina surface during dehydration/hydration cycles. The observed phenomenon can be explained by the coordination vanadyl spin probe along the axial axis to the surface centers of different polarity/acidity.</p></div>\",\"PeriodicalId\":469,\"journal\":{\"name\":\"Applied Magnetic Resonance\",\"volume\":\"55 10\",\"pages\":\"1293 - 1306\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Magnetic Resonance\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00723-024-01681-9\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Magnetic Resonance","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00723-024-01681-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
利用 EPR 方法和作为自旋探针的四苯基卟啉钒(VOTPP)配合物研究了温度处理过程中 γ-Al2O3 表面的变化。研究表明,VOTPP 复合物至少在温度达到 450 °C 和 \({P}_{\{O}}_{2}}\) ≲ 3 Pa 时是稳定的。这些表现出明显不同的自旋-哈密顿参数的形式之间的强度比取决于表面水合程度,而表面水合程度又决定了γ-Al2O3 表面不同酸度位点之间的比例。研究表明,在脱水/水合循环过程中,VOTPP 复合物在氧化铝表面的不同吸附形式之间会发生可逆转变。所观察到的现象可以用沿轴向配位到不同极性/酸度的表面中心的钒基自旋探针来解释。
Vanadyl Porphyrin: Efficient Spin Probe to Study the Alumina Surface of Supported Catalysts
The EPR method and vanadyl tetraphenylporphyrin complex (VOTPP) as a spin probe were employed to study the transformation of the γ-Al2O3 surface during temperature treatment. It has been shown that VOTPP complex is stable at least up to a temperature of 450 °C and \({P}_{{\text{O}}_{2}}\) ≲ 3 Pa. Four distinct forms of vanadyl complex were identified on the γ-Al2O3 surface, depending on the annealing temperature. The intensity ratio between these forms, exhibiting significantly different spin-Hamiltonian parameters, depend on the degree of surface hydration, which in turn determines the ratio between sites with different acidity on the γ-Al2O3 surface. It has been shown that VOTPP complex demonstrate reversible transitions between different adsorption forms on the alumina surface during dehydration/hydration cycles. The observed phenomenon can be explained by the coordination vanadyl spin probe along the axial axis to the surface centers of different polarity/acidity.
期刊介绍:
Applied Magnetic Resonance provides an international forum for the application of magnetic resonance in physics, chemistry, biology, medicine, geochemistry, ecology, engineering, and related fields.
The contents include articles with a strong emphasis on new applications, and on new experimental methods. Additional features include book reviews and Letters to the Editor.