用于投资组合选择的循环神经网络 GO-GARCH 模型

Pub Date : 2024-07-16 DOI:10.1515/jtse-2023-0012
Martin Burda, Adrian K. Schroeder
{"title":"用于投资组合选择的循环神经网络 GO-GARCH 模型","authors":"Martin Burda, Adrian K. Schroeder","doi":"10.1515/jtse-2023-0012","DOIUrl":null,"url":null,"abstract":"\n We develop a hybrid model of multivariate volatility that uses recurrent neural networks to capture the conditional variances of latent orthogonal factors in a GO-GARCH framework. Our approach seeks to balance model flexibility with ease of estimation and can be used to model conditional covariances of a large number of assets. The model performs favourably in comparison with relevant benchmark models in a minimum variance portfolio (MVP) scenario.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recurrent Neural Network GO-GARCH Model for Portfolio Selection\",\"authors\":\"Martin Burda, Adrian K. Schroeder\",\"doi\":\"10.1515/jtse-2023-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We develop a hybrid model of multivariate volatility that uses recurrent neural networks to capture the conditional variances of latent orthogonal factors in a GO-GARCH framework. Our approach seeks to balance model flexibility with ease of estimation and can be used to model conditional covariances of a large number of assets. The model performs favourably in comparison with relevant benchmark models in a minimum variance portfolio (MVP) scenario.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jtse-2023-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jtse-2023-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了一个多变量波动率混合模型,该模型使用递归神经网络在 GO-GARCH 框架下捕捉潜在正交因子的条件方差。我们的方法力求在模型的灵活性和估算的简便性之间取得平衡,可用于对大量资产的条件协方差进行建模。在最小方差组合(MVP)情况下,与相关基准模型相比,该模型表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Recurrent Neural Network GO-GARCH Model for Portfolio Selection
We develop a hybrid model of multivariate volatility that uses recurrent neural networks to capture the conditional variances of latent orthogonal factors in a GO-GARCH framework. Our approach seeks to balance model flexibility with ease of estimation and can be used to model conditional covariances of a large number of assets. The model performs favourably in comparison with relevant benchmark models in a minimum variance portfolio (MVP) scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1