转移膜显影的原子力显微镜观察

IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Tribology Letters Pub Date : 2024-07-16 DOI:10.1007/s11249-024-01893-x
Kathryn E. Shaffer, Edward J. McCumiskey, Brandon A. Krick, Jeffrey J. Ewin, Curtis R. Taylor, Christopher P. Junk, Gregory S. Blackman, W. Gregory Sawyer, Angela A. Pitenis
{"title":"转移膜显影的原子力显微镜观察","authors":"Kathryn E. Shaffer,&nbsp;Edward J. McCumiskey,&nbsp;Brandon A. Krick,&nbsp;Jeffrey J. Ewin,&nbsp;Curtis R. Taylor,&nbsp;Christopher P. Junk,&nbsp;Gregory S. Blackman,&nbsp;W. Gregory Sawyer,&nbsp;Angela A. Pitenis","doi":"10.1007/s11249-024-01893-x","DOIUrl":null,"url":null,"abstract":"<div><p>Atomic force microscopy (AFM) provides the opportunity to perform fundamental and mechanistic observations of complex, dynamic, and transient systems and ultimately link material microstructure and its evolution during tribological interactions. This investigation focuses on the evolution of a dynamic fluoropolymer tribofilm formed during sliding of polytetrafluoroethylene (PTFE) mixed with 5 wt% alpha-phase alumina particles against 304L stainless steel. Sliding was periodically interrupted for AFM topography scans. The average film roughness, the average friction coefficient, and polymer wear rate based on sample height recession were recorded as a function of increasing sliding cycles. Topographical maps suggested tribofilm nucleates in grooves of the steel countersample, spreads, and develops into a uniform film through sliding. Prominent nanoscale features were visible around 10,000 sliding cycles and thereafter. Scanning electron microscopy and energy-dispersive X-ray spectroscopy showed good correlations between these features and aluminum-rich domains, suggesting the presence of alumina particles on the surface.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01893-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Atomic Force Microscopy of Transfer Film Development\",\"authors\":\"Kathryn E. Shaffer,&nbsp;Edward J. McCumiskey,&nbsp;Brandon A. Krick,&nbsp;Jeffrey J. Ewin,&nbsp;Curtis R. Taylor,&nbsp;Christopher P. Junk,&nbsp;Gregory S. Blackman,&nbsp;W. Gregory Sawyer,&nbsp;Angela A. Pitenis\",\"doi\":\"10.1007/s11249-024-01893-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Atomic force microscopy (AFM) provides the opportunity to perform fundamental and mechanistic observations of complex, dynamic, and transient systems and ultimately link material microstructure and its evolution during tribological interactions. This investigation focuses on the evolution of a dynamic fluoropolymer tribofilm formed during sliding of polytetrafluoroethylene (PTFE) mixed with 5 wt% alpha-phase alumina particles against 304L stainless steel. Sliding was periodically interrupted for AFM topography scans. The average film roughness, the average friction coefficient, and polymer wear rate based on sample height recession were recorded as a function of increasing sliding cycles. Topographical maps suggested tribofilm nucleates in grooves of the steel countersample, spreads, and develops into a uniform film through sliding. Prominent nanoscale features were visible around 10,000 sliding cycles and thereafter. Scanning electron microscopy and energy-dispersive X-ray spectroscopy showed good correlations between these features and aluminum-rich domains, suggesting the presence of alumina particles on the surface.</p></div>\",\"PeriodicalId\":806,\"journal\":{\"name\":\"Tribology Letters\",\"volume\":\"72 3\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11249-024-01893-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11249-024-01893-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01893-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

原子力显微镜(AFM)提供了对复杂、动态和瞬态系统进行基础和机理观察的机会,并最终将摩擦学相互作用过程中的材料微观结构及其演变联系起来。本研究的重点是聚四氟乙烯(PTFE)与 5 wt% α-相氧化铝颗粒混合后与 304L 不锈钢滑动过程中形成的动态含氟聚合物三膜的演变。定期中断滑动以进行原子力显微镜形貌扫描。随着滑动周期的增加,记录了平均薄膜粗糙度、平均摩擦系数和基于样品高度衰退的聚合物磨损率。地形图显示,三膜在钢制反样品的凹槽中成核、扩散,并通过滑动形成一层均匀的薄膜。在 10,000 次滑动周期左右及其后,可以看到明显的纳米级特征。扫描电子显微镜和能量色散 X 射线光谱显示,这些特征与富铝域之间存在良好的相关性,表明表面存在氧化铝颗粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atomic Force Microscopy of Transfer Film Development

Atomic force microscopy (AFM) provides the opportunity to perform fundamental and mechanistic observations of complex, dynamic, and transient systems and ultimately link material microstructure and its evolution during tribological interactions. This investigation focuses on the evolution of a dynamic fluoropolymer tribofilm formed during sliding of polytetrafluoroethylene (PTFE) mixed with 5 wt% alpha-phase alumina particles against 304L stainless steel. Sliding was periodically interrupted for AFM topography scans. The average film roughness, the average friction coefficient, and polymer wear rate based on sample height recession were recorded as a function of increasing sliding cycles. Topographical maps suggested tribofilm nucleates in grooves of the steel countersample, spreads, and develops into a uniform film through sliding. Prominent nanoscale features were visible around 10,000 sliding cycles and thereafter. Scanning electron microscopy and energy-dispersive X-ray spectroscopy showed good correlations between these features and aluminum-rich domains, suggesting the presence of alumina particles on the surface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tribology Letters
Tribology Letters 工程技术-工程:化工
CiteScore
5.30
自引率
9.40%
发文量
116
审稿时长
2.5 months
期刊介绍: Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.
期刊最新文献
In-situ Synthesis of Nickel Nanoparticles in Olive Oil and Study of Their Tribological Properties as Vegetable Oil Additives Sliding Viscoelastic Contacts: The Role of Adhesion, Boundary Conditions, and Finite Geometry Obtaining Ultra-long Wear Lifetime of Graphene Oxide Films Under High Contact Stress Through Soft and Hard Interbeded Formation Mode Superlubricity of Sputtered MoS2 Film in Dry Air Enabled by Proton Irradiation Temperature Rise in Frictional Sliding Contact of Elastic–Plastic Solids with Fractal Surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1