{"title":"雷诺数对新型抛物线叶片萨沃尼乌斯风力旋翼气动系数和性能系数的影响","authors":"Man Mohan, Parag K Talukdar, U. Saha","doi":"10.1115/1.4065954","DOIUrl":null,"url":null,"abstract":"\n The vertical-axis Savonius wind rotor is known for its design simplicity, better starting qualities, and direction independency despite its inferior efficiency when measured against certain other types of vertical-axis wind rotors. Despite a plethora of research work on Savonius rotors, an in-depth analysis of Reynolds number (Re) on aerodynamic and power coefficients of the Savonius rotors is scarce. This paper aims at understanding the influence of Re on the performance of a novel parabolic blade profile through unsteady two-dimensional (2D) computation. The Reynolds-averaged Navier Stokes (RANS) equations are modelled using the ANSYS-Fluent by adopting shear stress transport (SST) k-ω turbulence model. The computational results of the novel blade profile are then compared and analysed with an established semicircular blade profile to draw some meaningful insights into the aerodynamic performance. In the tested range of Re = 5.3 × 104 − 10.6 × 104, the novel parabolic blade profile outperformed the semicircular blade profile in terms of aerodynamic and performance coefficients.","PeriodicalId":509700,"journal":{"name":"Journal of Energy Resources Technology","volume":"38 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Reynolds Number on Aerodynamic and Performance Coefficients of a Novel Parabolic-Bladed Savonius Wind Rotor\",\"authors\":\"Man Mohan, Parag K Talukdar, U. Saha\",\"doi\":\"10.1115/1.4065954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The vertical-axis Savonius wind rotor is known for its design simplicity, better starting qualities, and direction independency despite its inferior efficiency when measured against certain other types of vertical-axis wind rotors. Despite a plethora of research work on Savonius rotors, an in-depth analysis of Reynolds number (Re) on aerodynamic and power coefficients of the Savonius rotors is scarce. This paper aims at understanding the influence of Re on the performance of a novel parabolic blade profile through unsteady two-dimensional (2D) computation. The Reynolds-averaged Navier Stokes (RANS) equations are modelled using the ANSYS-Fluent by adopting shear stress transport (SST) k-ω turbulence model. The computational results of the novel blade profile are then compared and analysed with an established semicircular blade profile to draw some meaningful insights into the aerodynamic performance. In the tested range of Re = 5.3 × 104 − 10.6 × 104, the novel parabolic blade profile outperformed the semicircular blade profile in terms of aerodynamic and performance coefficients.\",\"PeriodicalId\":509700,\"journal\":{\"name\":\"Journal of Energy Resources Technology\",\"volume\":\"38 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Resources Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Resources Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of Reynolds Number on Aerodynamic and Performance Coefficients of a Novel Parabolic-Bladed Savonius Wind Rotor
The vertical-axis Savonius wind rotor is known for its design simplicity, better starting qualities, and direction independency despite its inferior efficiency when measured against certain other types of vertical-axis wind rotors. Despite a plethora of research work on Savonius rotors, an in-depth analysis of Reynolds number (Re) on aerodynamic and power coefficients of the Savonius rotors is scarce. This paper aims at understanding the influence of Re on the performance of a novel parabolic blade profile through unsteady two-dimensional (2D) computation. The Reynolds-averaged Navier Stokes (RANS) equations are modelled using the ANSYS-Fluent by adopting shear stress transport (SST) k-ω turbulence model. The computational results of the novel blade profile are then compared and analysed with an established semicircular blade profile to draw some meaningful insights into the aerodynamic performance. In the tested range of Re = 5.3 × 104 − 10.6 × 104, the novel parabolic blade profile outperformed the semicircular blade profile in terms of aerodynamic and performance coefficients.