Cesar Lubongo, Mohammed A. A. Bin Daej, P. Alexandridis
{"title":"塑料回收分类技术的最新发展:人工智能的出现和机器人的崛起","authors":"Cesar Lubongo, Mohammed A. A. Bin Daej, P. Alexandridis","doi":"10.3390/recycling9040059","DOIUrl":null,"url":null,"abstract":"Plastics recycling is an important component of the circular economy. In mechanical recycling, the recovery of high-quality plastics for subsequent reprocessing requires plastic waste to be first sorted by type, color, and size. In chemical recycling, certain types of plastics should be removed first as they negatively affect the process. Such sortation of plastic objects at Materials Recovery Facilities (MRFs) relies increasingly on automated technology. Critical for any sorting is the proper identification of the plastic type. Spectroscopy is used to this end, increasingly augmented by machine learning (ML) and artificial intelligence (AI). Recent developments in the application of ML/AI in plastics recycling are highlighted here, and the state of the art in the identification and sortation of plastic is presented. Commercial equipment for sorting plastic recyclables is identified from a survey of publicly available information. Automated sorting equipment, ML/AI-based sorters, and robotic sorters currently available on the market are evaluated regarding their sensors, capability to sort certain types of plastics, primary application, throughput, and accuracy. This information reflects the rapid progress achieved in sorting plastics. However, the sortation of film, dark plastics, and plastics comprising multiple types of polymers remains challenging. Improvements and/or new solutions in the automated sorting of plastics are forthcoming.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"31 7","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Developments in Technology for Sorting Plastic for Recycling: The Emergence of Artificial Intelligence and the Rise of the Robots\",\"authors\":\"Cesar Lubongo, Mohammed A. A. Bin Daej, P. Alexandridis\",\"doi\":\"10.3390/recycling9040059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plastics recycling is an important component of the circular economy. In mechanical recycling, the recovery of high-quality plastics for subsequent reprocessing requires plastic waste to be first sorted by type, color, and size. In chemical recycling, certain types of plastics should be removed first as they negatively affect the process. Such sortation of plastic objects at Materials Recovery Facilities (MRFs) relies increasingly on automated technology. Critical for any sorting is the proper identification of the plastic type. Spectroscopy is used to this end, increasingly augmented by machine learning (ML) and artificial intelligence (AI). Recent developments in the application of ML/AI in plastics recycling are highlighted here, and the state of the art in the identification and sortation of plastic is presented. Commercial equipment for sorting plastic recyclables is identified from a survey of publicly available information. Automated sorting equipment, ML/AI-based sorters, and robotic sorters currently available on the market are evaluated regarding their sensors, capability to sort certain types of plastics, primary application, throughput, and accuracy. This information reflects the rapid progress achieved in sorting plastics. However, the sortation of film, dark plastics, and plastics comprising multiple types of polymers remains challenging. Improvements and/or new solutions in the automated sorting of plastics are forthcoming.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"31 7\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/recycling9040059\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/recycling9040059","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Recent Developments in Technology for Sorting Plastic for Recycling: The Emergence of Artificial Intelligence and the Rise of the Robots
Plastics recycling is an important component of the circular economy. In mechanical recycling, the recovery of high-quality plastics for subsequent reprocessing requires plastic waste to be first sorted by type, color, and size. In chemical recycling, certain types of plastics should be removed first as they negatively affect the process. Such sortation of plastic objects at Materials Recovery Facilities (MRFs) relies increasingly on automated technology. Critical for any sorting is the proper identification of the plastic type. Spectroscopy is used to this end, increasingly augmented by machine learning (ML) and artificial intelligence (AI). Recent developments in the application of ML/AI in plastics recycling are highlighted here, and the state of the art in the identification and sortation of plastic is presented. Commercial equipment for sorting plastic recyclables is identified from a survey of publicly available information. Automated sorting equipment, ML/AI-based sorters, and robotic sorters currently available on the market are evaluated regarding their sensors, capability to sort certain types of plastics, primary application, throughput, and accuracy. This information reflects the rapid progress achieved in sorting plastics. However, the sortation of film, dark plastics, and plastics comprising multiple types of polymers remains challenging. Improvements and/or new solutions in the automated sorting of plastics are forthcoming.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.