{"title":"基于复合观测器的有扰动隐马尔可夫非线性系统异步控制","authors":"Weidi Cheng, Shuping He, Hai Wang, Changyin Sun","doi":"10.1002/acs.3872","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this article, an asynchronous adaptive tracking control approach is presented for a type of hidden Markov jump nonlinear systems with external disturbances. In this joint jump process model, hidden Markov model signifies the dynamics of the actual system, whereas the signal emits from the detector symbolizes the transmitted information. This leads to the phenomenon of asynchronization between the modes of the system and that of the controller. Accordingly, an asynchronous observer is developed by using the mode information from the detector to develop an asynchronous control approach. The observer contains a disturbance estimation part, to compensate the unknown external inputs. Utilizing the backstepping scheme, a strict-feedback asynchronous tracking controller is formulated, guaranteeing that all signals within the closed-loop system are semi-globally uniformly ultimately bounded in probability. Finally, the validity of the presented methodology is illustrated by means of a simulation example.</p>\n </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"38 9","pages":"3233-3249"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite-observer-based asynchronous control for hidden Markov nonlinear systems with disturbances\",\"authors\":\"Weidi Cheng, Shuping He, Hai Wang, Changyin Sun\",\"doi\":\"10.1002/acs.3872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this article, an asynchronous adaptive tracking control approach is presented for a type of hidden Markov jump nonlinear systems with external disturbances. In this joint jump process model, hidden Markov model signifies the dynamics of the actual system, whereas the signal emits from the detector symbolizes the transmitted information. This leads to the phenomenon of asynchronization between the modes of the system and that of the controller. Accordingly, an asynchronous observer is developed by using the mode information from the detector to develop an asynchronous control approach. The observer contains a disturbance estimation part, to compensate the unknown external inputs. Utilizing the backstepping scheme, a strict-feedback asynchronous tracking controller is formulated, guaranteeing that all signals within the closed-loop system are semi-globally uniformly ultimately bounded in probability. Finally, the validity of the presented methodology is illustrated by means of a simulation example.</p>\\n </div>\",\"PeriodicalId\":50347,\"journal\":{\"name\":\"International Journal of Adaptive Control and Signal Processing\",\"volume\":\"38 9\",\"pages\":\"3233-3249\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Adaptive Control and Signal Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/acs.3872\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adaptive Control and Signal Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acs.3872","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Composite-observer-based asynchronous control for hidden Markov nonlinear systems with disturbances
In this article, an asynchronous adaptive tracking control approach is presented for a type of hidden Markov jump nonlinear systems with external disturbances. In this joint jump process model, hidden Markov model signifies the dynamics of the actual system, whereas the signal emits from the detector symbolizes the transmitted information. This leads to the phenomenon of asynchronization between the modes of the system and that of the controller. Accordingly, an asynchronous observer is developed by using the mode information from the detector to develop an asynchronous control approach. The observer contains a disturbance estimation part, to compensate the unknown external inputs. Utilizing the backstepping scheme, a strict-feedback asynchronous tracking controller is formulated, guaranteeing that all signals within the closed-loop system are semi-globally uniformly ultimately bounded in probability. Finally, the validity of the presented methodology is illustrated by means of a simulation example.
期刊介绍:
The International Journal of Adaptive Control and Signal Processing is concerned with the design, synthesis and application of estimators or controllers where adaptive features are needed to cope with uncertainties.Papers on signal processing should also have some relevance to adaptive systems. The journal focus is on model based control design approaches rather than heuristic or rule based control design methods. All papers will be expected to include significant novel material.
Both the theory and application of adaptive systems and system identification are areas of interest. Papers on applications can include problems in the implementation of algorithms for real time signal processing and control. The stability, convergence, robustness and numerical aspects of adaptive algorithms are also suitable topics. The related subjects of controller tuning, filtering, networks and switching theory are also of interest. Principal areas to be addressed include:
Auto-Tuning, Self-Tuning and Model Reference Adaptive Controllers
Nonlinear, Robust and Intelligent Adaptive Controllers
Linear and Nonlinear Multivariable System Identification and Estimation
Identification of Linear Parameter Varying, Distributed and Hybrid Systems
Multiple Model Adaptive Control
Adaptive Signal processing Theory and Algorithms
Adaptation in Multi-Agent Systems
Condition Monitoring Systems
Fault Detection and Isolation Methods
Fault Detection and Isolation Methods
Fault-Tolerant Control (system supervision and diagnosis)
Learning Systems and Adaptive Modelling
Real Time Algorithms for Adaptive Signal Processing and Control
Adaptive Signal Processing and Control Applications
Adaptive Cloud Architectures and Networking
Adaptive Mechanisms for Internet of Things
Adaptive Sliding Mode Control.