从内部化合物库中发现新型苯并咪唑坏死抑制剂

Yu Zou, Yue Chai, Hong-Li Shao, Shuyu Wang, Ruilin Hou, Runhui Liu, Linjing Zhao, Chunlin Zhuang
{"title":"从内部化合物库中发现新型苯并咪唑坏死抑制剂","authors":"Yu Zou, Yue Chai, Hong-Li Shao, Shuyu Wang, Ruilin Hou, Runhui Liu, Linjing Zhao, Chunlin Zhuang","doi":"10.1055/s-0044-1788077","DOIUrl":null,"url":null,"abstract":"Necroptosis, a caspase-independent regulated cell death, is primarily mediated by the serine/threonine kinases RIPK1 and RIPK3, and the mixed lineage kinase domain-like protein (MLKL). Targeting necroptosis is a validated therapeutic strategy for various diseases. We screened compound 1, a novel benzimidazole-based necroptosis inhibitor, from our in-house compound library. We assessed its inhibitory roles and mechanisms in blocking HT-29 cell necroptosis. HT-29 cells were treated with pan caspase inhibitor Z-VAD-FMK + Smac mimetic (TSZ), or Z-VAD-FMK + cycloheximide (TCZ), then with tumor necrosis factor α (TNFα) to induce necroptosis in vitro. Prior to stimulation, cells were exposed to compound 1. GSK'843 served as a control drug. HT-29 cells were treated with TNFα + Smac mimetic (TS) or TNFα + cycloheximide (TC) to induce apoptosis in vitro. Cell viability, cell death, and necroptotic cells were evaluated by luminescence-based CellTiter-Lumi assay or flow cytometry. Western blots, immunoprecipitation, and KINOMEscan technology were used to assess RIPK1, RIPK3, and MLKL's involvement in compound 1's mechanisms. Compound 1's roles in mouse TNFα induced systemic inflammatory response syndrome (SIRS) in mice were also investigated by assessing body temperature, mouse survival rate, and interleukin (IL)-β and IL-6 levels in respective tissues. We found that necroptosis triggered by TSZ or TCZ was effectively mitigated by compound 1, showing a dose-responsive inhibition, and it could protect mice from TNF-induced SIRS. The mechanism study showed that compound 1 could interact with RIPK1, inhibiting RIPK1 phosphorylation activation to block necrosome formation in necroptotic cells. In summary, compound 1 is a promising lead compound for developing treatments targeting diseases associated with necroptosis.","PeriodicalId":19767,"journal":{"name":"Pharmaceutical Fronts","volume":"109 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of a Novel Benzimidazole Necroptosis Inhibitor from an In-House Compound Library\",\"authors\":\"Yu Zou, Yue Chai, Hong-Li Shao, Shuyu Wang, Ruilin Hou, Runhui Liu, Linjing Zhao, Chunlin Zhuang\",\"doi\":\"10.1055/s-0044-1788077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Necroptosis, a caspase-independent regulated cell death, is primarily mediated by the serine/threonine kinases RIPK1 and RIPK3, and the mixed lineage kinase domain-like protein (MLKL). Targeting necroptosis is a validated therapeutic strategy for various diseases. We screened compound 1, a novel benzimidazole-based necroptosis inhibitor, from our in-house compound library. We assessed its inhibitory roles and mechanisms in blocking HT-29 cell necroptosis. HT-29 cells were treated with pan caspase inhibitor Z-VAD-FMK + Smac mimetic (TSZ), or Z-VAD-FMK + cycloheximide (TCZ), then with tumor necrosis factor α (TNFα) to induce necroptosis in vitro. Prior to stimulation, cells were exposed to compound 1. GSK'843 served as a control drug. HT-29 cells were treated with TNFα + Smac mimetic (TS) or TNFα + cycloheximide (TC) to induce apoptosis in vitro. Cell viability, cell death, and necroptotic cells were evaluated by luminescence-based CellTiter-Lumi assay or flow cytometry. Western blots, immunoprecipitation, and KINOMEscan technology were used to assess RIPK1, RIPK3, and MLKL's involvement in compound 1's mechanisms. Compound 1's roles in mouse TNFα induced systemic inflammatory response syndrome (SIRS) in mice were also investigated by assessing body temperature, mouse survival rate, and interleukin (IL)-β and IL-6 levels in respective tissues. We found that necroptosis triggered by TSZ or TCZ was effectively mitigated by compound 1, showing a dose-responsive inhibition, and it could protect mice from TNF-induced SIRS. The mechanism study showed that compound 1 could interact with RIPK1, inhibiting RIPK1 phosphorylation activation to block necrosome formation in necroptotic cells. In summary, compound 1 is a promising lead compound for developing treatments targeting diseases associated with necroptosis.\",\"PeriodicalId\":19767,\"journal\":{\"name\":\"Pharmaceutical Fronts\",\"volume\":\"109 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Fronts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0044-1788077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Fronts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0044-1788077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

坏死是一种不依赖于木酶的细胞调节性死亡,主要由丝氨酸/苏氨酸激酶 RIPK1 和 RIPK3 以及混合系激酶域样蛋白(MLKL)介导。靶向坏死是一种治疗各种疾病的有效策略。我们从内部化合物库中筛选出了化合物 1,这是一种基于苯并咪唑的新型坏死抑制剂。我们评估了其在阻断 HT-29 细胞坏死过程中的抑制作用和机制。用泛 Caspase 抑制剂 Z-VAD-FMK + Smac mimetic(TSZ)或 Z-VAD-FMK + 环己亚胺(TCZ)处理 HT-29 细胞,然后用肿瘤坏死因子 α(TNFα)诱导体外坏死。刺激前,细胞暴露于化合物 1,GSK'843 作为对照药物。用 TNFα + Smac 模拟物(TS)或 TNFα + 环己亚胺(TC)处理 HT-29 细胞以诱导体外细胞凋亡。细胞活力、细胞死亡和坏死细胞通过基于发光的 CellTiter-Lumi 检测法或流式细胞术进行评估。利用 Western 印迹、免疫沉淀和 KINOMEscan 技术评估了 RIPK1、RIPK3 和 MLKL 参与化合物 1 机制的情况。化合物 1 在小鼠 TNFα 诱导的全身炎症反应综合征(SIRS)中的作用也通过评估体温、小鼠存活率以及各组织中白细胞介素(IL)-β 和 IL-6 的水平进行了研究。我们发现,化合物 1 能有效缓解 TSZ 或 TCZ 引发的坏死,并表现出剂量反应性的抑制作用,而且能保护小鼠免受 TNF 引发的 SIRS 的影响。机理研究表明,化合物 1 能与 RIPK1 相互作用,抑制 RIPK1 磷酸化活化,从而阻断坏死细胞中坏死体的形成。总之,化合物 1 是一种很有前景的先导化合物,可用于开发针对坏死相关疾病的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovery of a Novel Benzimidazole Necroptosis Inhibitor from an In-House Compound Library
Necroptosis, a caspase-independent regulated cell death, is primarily mediated by the serine/threonine kinases RIPK1 and RIPK3, and the mixed lineage kinase domain-like protein (MLKL). Targeting necroptosis is a validated therapeutic strategy for various diseases. We screened compound 1, a novel benzimidazole-based necroptosis inhibitor, from our in-house compound library. We assessed its inhibitory roles and mechanisms in blocking HT-29 cell necroptosis. HT-29 cells were treated with pan caspase inhibitor Z-VAD-FMK + Smac mimetic (TSZ), or Z-VAD-FMK + cycloheximide (TCZ), then with tumor necrosis factor α (TNFα) to induce necroptosis in vitro. Prior to stimulation, cells were exposed to compound 1. GSK'843 served as a control drug. HT-29 cells were treated with TNFα + Smac mimetic (TS) or TNFα + cycloheximide (TC) to induce apoptosis in vitro. Cell viability, cell death, and necroptotic cells were evaluated by luminescence-based CellTiter-Lumi assay or flow cytometry. Western blots, immunoprecipitation, and KINOMEscan technology were used to assess RIPK1, RIPK3, and MLKL's involvement in compound 1's mechanisms. Compound 1's roles in mouse TNFα induced systemic inflammatory response syndrome (SIRS) in mice were also investigated by assessing body temperature, mouse survival rate, and interleukin (IL)-β and IL-6 levels in respective tissues. We found that necroptosis triggered by TSZ or TCZ was effectively mitigated by compound 1, showing a dose-responsive inhibition, and it could protect mice from TNF-induced SIRS. The mechanism study showed that compound 1 could interact with RIPK1, inhibiting RIPK1 phosphorylation activation to block necrosome formation in necroptotic cells. In summary, compound 1 is a promising lead compound for developing treatments targeting diseases associated with necroptosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
24
审稿时长
15 weeks
期刊最新文献
Recent Advances in Mitochondrial Pyruvate Carrier Inhibitors Discovery of a Novel Benzimidazole Necroptosis Inhibitor from an In-House Compound Library Research Strategies for Precise Manipulation of Micro/Nanoparticle Drug Delivery Systems Using Microfluidic Technology: A Review Advances in Tumor Targeting Biomimetic Drug Delivery Systems: A Promising Approach for Antitumor Therapy 3D Printing Pharmaceuticals: Current Status and Future Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1