使用结肠镜数据集进行基于深度学习的新型息肉检测

Sai Rakshana K., Antony Dennis Ananth, Gowri L.
{"title":"使用结肠镜数据集进行基于深度学习的新型息肉检测","authors":"Sai Rakshana K., Antony Dennis Ananth, Gowri L.","doi":"10.47852/bonviewaia42022549","DOIUrl":null,"url":null,"abstract":"This work addresses the critical task of polyp detection and classification using the SUN colonoscopy video database, which consists of still images annotated with bounding boxes. These images categorize frames into polyp and non-polyp and encompass six distinct classes of polyps: Hyperplastic polyp, Sessile serrated lesion, Low-grade adenoma, Traditional serrated adenoma, High-grade adenoma, and Invasive carcinoma. The approach involves a two-stage classification process. Initially, MobileNetV2 is employed to distinguish between polyp and non-polyp frames. Subsequently, ResNet50 and GoogLeNet are utilized to classify the identified polyps into the six predefined categories. Data augmentation techniques are implemented to address the inherent imbalance in class distribution within the dataset, enhancing model performance and generalizability. The results highlight the effectiveness of GoogLeNet, which achieved an impressive accuracy of 98%, significantly outperforming ResNet50's accuracy of 76.16%. This substantial improvement underscores the potential of GoogLeNet in enhancing the accuracy of polyp classification. The significance of this work lies in its contribution to advancing automated polyp detection and cancer stage classification, crucial for early diagnosis and treatment. These findings provide a foundation for further research and development in this domain, with the potential to improve clinical outcomes through more accurate and timely identification of colorectal polyps.","PeriodicalId":518162,"journal":{"name":"Artificial Intelligence and Applications","volume":"15 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Ensemble Deep Learning Based Polyp Detection Using Colonoscopy Dataset\",\"authors\":\"Sai Rakshana K., Antony Dennis Ananth, Gowri L.\",\"doi\":\"10.47852/bonviewaia42022549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work addresses the critical task of polyp detection and classification using the SUN colonoscopy video database, which consists of still images annotated with bounding boxes. These images categorize frames into polyp and non-polyp and encompass six distinct classes of polyps: Hyperplastic polyp, Sessile serrated lesion, Low-grade adenoma, Traditional serrated adenoma, High-grade adenoma, and Invasive carcinoma. The approach involves a two-stage classification process. Initially, MobileNetV2 is employed to distinguish between polyp and non-polyp frames. Subsequently, ResNet50 and GoogLeNet are utilized to classify the identified polyps into the six predefined categories. Data augmentation techniques are implemented to address the inherent imbalance in class distribution within the dataset, enhancing model performance and generalizability. The results highlight the effectiveness of GoogLeNet, which achieved an impressive accuracy of 98%, significantly outperforming ResNet50's accuracy of 76.16%. This substantial improvement underscores the potential of GoogLeNet in enhancing the accuracy of polyp classification. The significance of this work lies in its contribution to advancing automated polyp detection and cancer stage classification, crucial for early diagnosis and treatment. These findings provide a foundation for further research and development in this domain, with the potential to improve clinical outcomes through more accurate and timely identification of colorectal polyps.\",\"PeriodicalId\":518162,\"journal\":{\"name\":\"Artificial Intelligence and Applications\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47852/bonviewaia42022549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47852/bonviewaia42022549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究利用 SUN 结肠镜检查视频数据库来完成息肉检测和分类的关键任务,该数据库由带边界框注释的静态图像组成。这些图像将帧分为息肉和非息肉,并包含六类不同的息肉:增生性息肉、无柄锯齿状病变、低级别腺瘤、传统锯齿状腺瘤、高级别腺瘤和浸润性癌。该方法包括两个阶段的分类过程。首先,采用 MobileNetV2 对息肉和非息肉帧进行区分。随后,利用 ResNet50 和 GoogLeNet 将识别出的息肉分为六个预定义类别。数据增强技术的应用解决了数据集内固有的类别分布不平衡问题,提高了模型的性能和普适性。结果凸显了 GoogLeNet 的有效性,其准确率达到了令人印象深刻的 98%,大大超过了 ResNet50 的 76.16% 的准确率。这一大幅提升凸显了 GoogLeNet 在提高息肉分类准确性方面的潜力。这项工作的意义在于,它有助于推进息肉自动检测和癌症分期分类,这对早期诊断和治疗至关重要。这些发现为这一领域的进一步研究和开发奠定了基础,有望通过更准确、更及时地识别结直肠息肉来改善临床结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Ensemble Deep Learning Based Polyp Detection Using Colonoscopy Dataset
This work addresses the critical task of polyp detection and classification using the SUN colonoscopy video database, which consists of still images annotated with bounding boxes. These images categorize frames into polyp and non-polyp and encompass six distinct classes of polyps: Hyperplastic polyp, Sessile serrated lesion, Low-grade adenoma, Traditional serrated adenoma, High-grade adenoma, and Invasive carcinoma. The approach involves a two-stage classification process. Initially, MobileNetV2 is employed to distinguish between polyp and non-polyp frames. Subsequently, ResNet50 and GoogLeNet are utilized to classify the identified polyps into the six predefined categories. Data augmentation techniques are implemented to address the inherent imbalance in class distribution within the dataset, enhancing model performance and generalizability. The results highlight the effectiveness of GoogLeNet, which achieved an impressive accuracy of 98%, significantly outperforming ResNet50's accuracy of 76.16%. This substantial improvement underscores the potential of GoogLeNet in enhancing the accuracy of polyp classification. The significance of this work lies in its contribution to advancing automated polyp detection and cancer stage classification, crucial for early diagnosis and treatment. These findings provide a foundation for further research and development in this domain, with the potential to improve clinical outcomes through more accurate and timely identification of colorectal polyps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Unsupervised Learning Driven Intelligence for Prediction of Prostate Cancer A Novel Ensemble Deep Learning Based Polyp Detection Using Colonoscopy Dataset Towards Predicting the Quality of Red Wine Using Novel Machine Learning Methods for Classification, Data Visualization and Analysis Soliton Solutions of Some Ocean Waves Supported by Physics Informed Neural Network Method Fuzzy-Based Robot Behavior with the Application of Emotional Pattern Generator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1