利用强化学习控制光腔锁定

Edoardo Fazzari, H. Loughlin, Chris Stoughton
{"title":"利用强化学习控制光腔锁定","authors":"Edoardo Fazzari, H. Loughlin, Chris Stoughton","doi":"10.1088/2632-2153/ad638f","DOIUrl":null,"url":null,"abstract":"\n This study applies an effective methodology based on Reinforcement Learning (RL) to a control system. Using the Pound-Drever-Hall locking scheme, we match the wavelength of a controlled laser to the length of a Fabry-Pérot cavity such that the cavity length is an exact integer multiple of the laser wavelength. Typically, long-term drift of the cavity length and laser wavelength exceeds the dynamic range of this control if only the laser's piezoelectric transducer is actuated, so the same error signal also controls the temperature of the laser crystal. In this work, we instead implement this feedback control grounded on Q-Learning. Our system learns in real-time, eschewing reliance on historical data, and exhibits adaptability to system variations post-training. This adaptive quality ensures continuous updates to the learning agent. This innovative approach maintains lock for eight days on average.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"17 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlling optical-cavity locking using reinforcement learning\",\"authors\":\"Edoardo Fazzari, H. Loughlin, Chris Stoughton\",\"doi\":\"10.1088/2632-2153/ad638f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study applies an effective methodology based on Reinforcement Learning (RL) to a control system. Using the Pound-Drever-Hall locking scheme, we match the wavelength of a controlled laser to the length of a Fabry-Pérot cavity such that the cavity length is an exact integer multiple of the laser wavelength. Typically, long-term drift of the cavity length and laser wavelength exceeds the dynamic range of this control if only the laser's piezoelectric transducer is actuated, so the same error signal also controls the temperature of the laser crystal. In this work, we instead implement this feedback control grounded on Q-Learning. Our system learns in real-time, eschewing reliance on historical data, and exhibits adaptability to system variations post-training. This adaptive quality ensures continuous updates to the learning agent. This innovative approach maintains lock for eight days on average.\",\"PeriodicalId\":503691,\"journal\":{\"name\":\"Machine Learning: Science and Technology\",\"volume\":\"17 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning: Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad638f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad638f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究将基于强化学习(RL)的有效方法应用于控制系统。利用 Pound-Drever-Hall 锁定方案,我们将受控激光器的波长与法布里-佩罗腔的长度相匹配,从而使腔长是激光器波长的精确整数倍。通常情况下,如果只驱动激光器的压电传感器,腔长和激光波长的长期漂移会超出这种控制的动态范围,因此同一误差信号还能控制激光晶体的温度。在这项工作中,我们以 Q 学习为基础实现了这种反馈控制。我们的系统是实时学习的,避免了对历史数据的依赖,并能适应训练后的系统变化。这种自适应质量确保了学习代理的持续更新。这种创新方法平均可锁定八天。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controlling optical-cavity locking using reinforcement learning
This study applies an effective methodology based on Reinforcement Learning (RL) to a control system. Using the Pound-Drever-Hall locking scheme, we match the wavelength of a controlled laser to the length of a Fabry-Pérot cavity such that the cavity length is an exact integer multiple of the laser wavelength. Typically, long-term drift of the cavity length and laser wavelength exceeds the dynamic range of this control if only the laser's piezoelectric transducer is actuated, so the same error signal also controls the temperature of the laser crystal. In this work, we instead implement this feedback control grounded on Q-Learning. Our system learns in real-time, eschewing reliance on historical data, and exhibits adaptability to system variations post-training. This adaptive quality ensures continuous updates to the learning agent. This innovative approach maintains lock for eight days on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Benefit of Attention in Inverse Design of Thin Films Filters Predictive Models for Inorganic Materials Thermoelectric Properties with Machine Learning Benchmarking machine learning interatomic potentials via phonon anharmonicity Application of Deep Learning-based Fuzzy Systems to Analyze the Overall Risk of Mortality in Glioblastoma Multiforme Formation Energy Prediction of Neutral Single-Atom Impurities in 2D Materials using Tree-based Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1