Zhizhen Zhang, Xin Zheng, Haiming Yang, Xuan Chen, Peng Chen
{"title":"外部火源下充油设备火灾非线性发展过程的实验研究","authors":"Zhizhen Zhang, Xin Zheng, Haiming Yang, Xuan Chen, Peng Chen","doi":"10.1115/1.4065949","DOIUrl":null,"url":null,"abstract":"\n The transformer is the key oil-filled equipment in the power system, and its fire behavior seriously affects the safe operation of the power grid. In this paper, in order to analyze the fire development process and combustion behavior of oil-filled equipment, a mesoscale model of transformer equipment was constructed, and fire simulation experiments of transformer equipment under the action of external ignition sources were conducted. The flame temperature, flame height, heat release rate, oil temperature, and pressure were measured. The experimental results show that the oil-filled equipment fire presents the characteristics of nonlinear development. The fire can be divided into three stages: ignition stage, stable growth stage, and combustion mutation stage. The transformer oil near the wall is pyrolyzed by the external heat source, and the combustible gas and transformer oil form a gas-liquid two-phase flow, which is the main reason for the nonlinear development of oil-filled equipment fire. The experimental results are of great significance for the safe operation and fire control of power system oil-filled equipment.","PeriodicalId":509700,"journal":{"name":"Journal of Energy Resources Technology","volume":"5 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on nonlinear development process of oil-filled equipment fire under external fire source\",\"authors\":\"Zhizhen Zhang, Xin Zheng, Haiming Yang, Xuan Chen, Peng Chen\",\"doi\":\"10.1115/1.4065949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The transformer is the key oil-filled equipment in the power system, and its fire behavior seriously affects the safe operation of the power grid. In this paper, in order to analyze the fire development process and combustion behavior of oil-filled equipment, a mesoscale model of transformer equipment was constructed, and fire simulation experiments of transformer equipment under the action of external ignition sources were conducted. The flame temperature, flame height, heat release rate, oil temperature, and pressure were measured. The experimental results show that the oil-filled equipment fire presents the characteristics of nonlinear development. The fire can be divided into three stages: ignition stage, stable growth stage, and combustion mutation stage. The transformer oil near the wall is pyrolyzed by the external heat source, and the combustible gas and transformer oil form a gas-liquid two-phase flow, which is the main reason for the nonlinear development of oil-filled equipment fire. The experimental results are of great significance for the safe operation and fire control of power system oil-filled equipment.\",\"PeriodicalId\":509700,\"journal\":{\"name\":\"Journal of Energy Resources Technology\",\"volume\":\"5 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Resources Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Resources Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental study on nonlinear development process of oil-filled equipment fire under external fire source
The transformer is the key oil-filled equipment in the power system, and its fire behavior seriously affects the safe operation of the power grid. In this paper, in order to analyze the fire development process and combustion behavior of oil-filled equipment, a mesoscale model of transformer equipment was constructed, and fire simulation experiments of transformer equipment under the action of external ignition sources were conducted. The flame temperature, flame height, heat release rate, oil temperature, and pressure were measured. The experimental results show that the oil-filled equipment fire presents the characteristics of nonlinear development. The fire can be divided into three stages: ignition stage, stable growth stage, and combustion mutation stage. The transformer oil near the wall is pyrolyzed by the external heat source, and the combustible gas and transformer oil form a gas-liquid two-phase flow, which is the main reason for the nonlinear development of oil-filled equipment fire. The experimental results are of great significance for the safe operation and fire control of power system oil-filled equipment.