{"title":"考虑热辐射的超音速燃烧器自适应湍流涡模拟","authors":"Pengfei Xie, Zhaoyang Xia, Lu Lu, Xingsi Han","doi":"10.2514/1.t7000","DOIUrl":null,"url":null,"abstract":"The newly developed self-adaptive turbulence eddy simulation (SATES) method coupled with three turbulent combustion models, i.e., the finite-rate model, eddy-dissipation model, and steady laminar flamelet model, is used to numerically study the non-premixed supersonic hydrogen combustion in a DLR (German Aerospace Center) model scramjet combustor with a wedge flame holder. The study investigates the interactions of the shock waves and the flowfields as well as the flame structures. The SATES-based combustion simulation results demonstrate satisfactory agreement with the available experimental data. The study also explores the effect of fuel injection temperature on the combustion process and reveals that an increase in hydrogen temperature improves combustion efficiency. Additionally, thermal radiation effects are considered with the discrete ordinates method/weighted-sum-of-gray-gases method. The results indicate that thermal radiation heat transfer reduces the flame temperature and significantly affects the flame shape and temperature fluctuations. Also, radiation heat flux is an important factor and should be included in supersonic combustion simulations. The study demonstrates the potential of the SATES method for complex supersonic combustion and also provides a reference for thermal radiation in supersonic combustion.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Adaptive Turbulence Eddy Simulation of Supersonic Combustor Considering Thermal Radiation\",\"authors\":\"Pengfei Xie, Zhaoyang Xia, Lu Lu, Xingsi Han\",\"doi\":\"10.2514/1.t7000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The newly developed self-adaptive turbulence eddy simulation (SATES) method coupled with three turbulent combustion models, i.e., the finite-rate model, eddy-dissipation model, and steady laminar flamelet model, is used to numerically study the non-premixed supersonic hydrogen combustion in a DLR (German Aerospace Center) model scramjet combustor with a wedge flame holder. The study investigates the interactions of the shock waves and the flowfields as well as the flame structures. The SATES-based combustion simulation results demonstrate satisfactory agreement with the available experimental data. The study also explores the effect of fuel injection temperature on the combustion process and reveals that an increase in hydrogen temperature improves combustion efficiency. Additionally, thermal radiation effects are considered with the discrete ordinates method/weighted-sum-of-gray-gases method. The results indicate that thermal radiation heat transfer reduces the flame temperature and significantly affects the flame shape and temperature fluctuations. Also, radiation heat flux is an important factor and should be included in supersonic combustion simulations. The study demonstrates the potential of the SATES method for complex supersonic combustion and also provides a reference for thermal radiation in supersonic combustion.\",\"PeriodicalId\":17482,\"journal\":{\"name\":\"Journal of Thermophysics and Heat Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermophysics and Heat Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.t7000\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t7000","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Self-Adaptive Turbulence Eddy Simulation of Supersonic Combustor Considering Thermal Radiation
The newly developed self-adaptive turbulence eddy simulation (SATES) method coupled with three turbulent combustion models, i.e., the finite-rate model, eddy-dissipation model, and steady laminar flamelet model, is used to numerically study the non-premixed supersonic hydrogen combustion in a DLR (German Aerospace Center) model scramjet combustor with a wedge flame holder. The study investigates the interactions of the shock waves and the flowfields as well as the flame structures. The SATES-based combustion simulation results demonstrate satisfactory agreement with the available experimental data. The study also explores the effect of fuel injection temperature on the combustion process and reveals that an increase in hydrogen temperature improves combustion efficiency. Additionally, thermal radiation effects are considered with the discrete ordinates method/weighted-sum-of-gray-gases method. The results indicate that thermal radiation heat transfer reduces the flame temperature and significantly affects the flame shape and temperature fluctuations. Also, radiation heat flux is an important factor and should be included in supersonic combustion simulations. The study demonstrates the potential of the SATES method for complex supersonic combustion and also provides a reference for thermal radiation in supersonic combustion.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.