Mackenzie Newman, Heather Connery, Swapna Kannan, Aarti Gautam, R. Hammamieh, N. Chakraborty, Jonathan Boyd
{"title":"芬太尼过量导致雄性 SKH1 小鼠长时间心肺功能失调","authors":"Mackenzie Newman, Heather Connery, Swapna Kannan, Aarti Gautam, R. Hammamieh, N. Chakraborty, Jonathan Boyd","doi":"10.3390/ph17070941","DOIUrl":null,"url":null,"abstract":"Fentanyl overdose is a survivable condition that commonly resolves without chronic overt changes in phenotype. While the acute physiological effects of fentanyl overdose, such as opioid-induced respiratory depression (OIRD) and Wooden Chest Syndrome, represent immediate risks of lethality, little is known about longer-term systemic or organ-level impacts for survivors. In this study, we investigated the effects of a single, bolus fentanyl overdose on components of the cardiopulmonary system up to one week post. SKH1 mice were administered subcutaneous fentanyl at the highest non-lethal dose (62 mg/kg), LD10 (110 mg/kg), or LD50 (135 mg/kg), before euthanasia at 40 min, 6 h, 24 h, or 7 d post-exposure. The cerebral cortex, heart, lungs, and plasma were assayed using an immune monitoring 48-plex panel. The results showed significantly dysregulated cytokine, chemokine, and growth factor concentrations compared to time-matched controls, principally in hearts, then lungs and plasma to a lesser extent, for the length of the study, with the cortex largely unaffected. Major significant analytes contributing to variance included eotaxin-1, IL-33, and betacellulin, which were generally downregulated across time. The results of this study suggest that cardiopulmonary toxicity may persist from a single fentanyl overdose and have wide implications for the endurance of the expanding population of survivors.","PeriodicalId":509865,"journal":{"name":"Pharmaceuticals","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fentanyl Overdose Causes Prolonged Cardiopulmonary Dysregulation in Male SKH1 Mice\",\"authors\":\"Mackenzie Newman, Heather Connery, Swapna Kannan, Aarti Gautam, R. Hammamieh, N. Chakraborty, Jonathan Boyd\",\"doi\":\"10.3390/ph17070941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fentanyl overdose is a survivable condition that commonly resolves without chronic overt changes in phenotype. While the acute physiological effects of fentanyl overdose, such as opioid-induced respiratory depression (OIRD) and Wooden Chest Syndrome, represent immediate risks of lethality, little is known about longer-term systemic or organ-level impacts for survivors. In this study, we investigated the effects of a single, bolus fentanyl overdose on components of the cardiopulmonary system up to one week post. SKH1 mice were administered subcutaneous fentanyl at the highest non-lethal dose (62 mg/kg), LD10 (110 mg/kg), or LD50 (135 mg/kg), before euthanasia at 40 min, 6 h, 24 h, or 7 d post-exposure. The cerebral cortex, heart, lungs, and plasma were assayed using an immune monitoring 48-plex panel. The results showed significantly dysregulated cytokine, chemokine, and growth factor concentrations compared to time-matched controls, principally in hearts, then lungs and plasma to a lesser extent, for the length of the study, with the cortex largely unaffected. Major significant analytes contributing to variance included eotaxin-1, IL-33, and betacellulin, which were generally downregulated across time. The results of this study suggest that cardiopulmonary toxicity may persist from a single fentanyl overdose and have wide implications for the endurance of the expanding population of survivors.\",\"PeriodicalId\":509865,\"journal\":{\"name\":\"Pharmaceuticals\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceuticals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ph17070941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ph17070941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fentanyl Overdose Causes Prolonged Cardiopulmonary Dysregulation in Male SKH1 Mice
Fentanyl overdose is a survivable condition that commonly resolves without chronic overt changes in phenotype. While the acute physiological effects of fentanyl overdose, such as opioid-induced respiratory depression (OIRD) and Wooden Chest Syndrome, represent immediate risks of lethality, little is known about longer-term systemic or organ-level impacts for survivors. In this study, we investigated the effects of a single, bolus fentanyl overdose on components of the cardiopulmonary system up to one week post. SKH1 mice were administered subcutaneous fentanyl at the highest non-lethal dose (62 mg/kg), LD10 (110 mg/kg), or LD50 (135 mg/kg), before euthanasia at 40 min, 6 h, 24 h, or 7 d post-exposure. The cerebral cortex, heart, lungs, and plasma were assayed using an immune monitoring 48-plex panel. The results showed significantly dysregulated cytokine, chemokine, and growth factor concentrations compared to time-matched controls, principally in hearts, then lungs and plasma to a lesser extent, for the length of the study, with the cortex largely unaffected. Major significant analytes contributing to variance included eotaxin-1, IL-33, and betacellulin, which were generally downregulated across time. The results of this study suggest that cardiopulmonary toxicity may persist from a single fentanyl overdose and have wide implications for the endurance of the expanding population of survivors.