求助PDF
{"title":"立方括号中的细边","authors":"Xiaoling He, Fuliang Lu","doi":"10.1002/jgt.23150","DOIUrl":null,"url":null,"abstract":"<p>For a vertex set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> in a graph, the <i>edge cut</i> <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>X</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\partial (X)$</annotation>\n </semantics></math> is the set of edges with exactly one end vertex in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math>. An edge cut <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>X</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\partial (X)$</annotation>\n </semantics></math> is <i>tight</i> if every perfect matching of the graph contains exactly one edge in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>X</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\partial (X)$</annotation>\n </semantics></math>. A matching covered bipartite graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a <i>brace</i> if, for every tight cut <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>∂</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mi>X</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\partial (X)$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>|</mo>\n \n <mi>X</mi>\n \n <mo>|</mo>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $|X|=1$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>|</mo>\n \n <mover>\n <mi>X</mi>\n \n <mo>¯</mo>\n </mover>\n \n <mo>|</mo>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n <annotation> $|\\bar{X}|=1$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mover>\n <mi>X</mi>\n \n <mo>¯</mo>\n </mover>\n \n <mo>=</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>⧹</mo>\n \n <mi>X</mi>\n </mrow>\n </mrow>\n <annotation> $\\bar{X}=V(G)\\setminus X$</annotation>\n </semantics></math>. Braces play an important role in Lovász's tight cut decomposition of matching covered graphs. The <i>bicontraction</i> of a vertex <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>v</mi>\n </mrow>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math> of degree two in a graph, with precisely two neighbours <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${v}_{1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${v}_{2}$</annotation>\n </semantics></math>, consists of shrinking the set <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mrow>\n <mo>{</mo>\n \n <mrow>\n <msub>\n <mi>v</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mi>v</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>v</mi>\n \n <mn>2</mn>\n </msub>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n </mrow>\n <annotation> $\\{{v}_{1},v,{v}_{2}\\}$</annotation>\n </semantics></math> to a single vertex. The <i>retract</i> of a matching covered graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is the graph obtained from <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> by repeatedly the bicontractions of vertices of degree two. An edge <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>e</mi>\n </mrow>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math> of a brace <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with at least six vertices is <i>thin</i> if the retract of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n \n <mo>−</mo>\n \n <mi>e</mi>\n </mrow>\n </mrow>\n <annotation> $G-e$</annotation>\n </semantics></math> is a brace. McCuaig showed that every brace of order at least six has a thin edge. In a brace <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of order six or more, Carvalho, Lucchesi and Murty proved that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has two thin edges, and conjectured that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> contains two nonadjacent thin edges. Further, they made a stronger conjecture: There exists a positive constant <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n <annotation> $c$</annotation>\n </semantics></math> such that every brace <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n \n <mo>|</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation> $c|V(G)|$</annotation>\n </semantics></math> thin edges. By showing that, in every cubic brace <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of order at least six, there exists a matching <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>M</mi>\n </mrow>\n </mrow>\n <annotation> $M$</annotation>\n </semantics></math> of size at least <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>|</mo>\n \n <mi>V</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>|</mo>\n \n <mo>∕</mo>\n \n <mn>10</mn>\n </mrow>\n </mrow>\n <annotation> $|V(G)|\\unicode{x02215}10$</annotation>\n </semantics></math> such that every edge in <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>M</mi>\n </mrow>\n </mrow>\n <annotation> $M$</annotation>\n </semantics></math> is thin, we prove that the above two conjectures hold for cubic braces.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 3","pages":"642-675"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thin edges in cubic braces\",\"authors\":\"Xiaoling He, Fuliang Lu\",\"doi\":\"10.1002/jgt.23150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a vertex set <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math> in a graph, the <i>edge cut</i> <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∂</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>X</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\partial (X)$</annotation>\\n </semantics></math> is the set of edges with exactly one end vertex in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n </mrow>\\n <annotation> $X$</annotation>\\n </semantics></math>. An edge cut <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∂</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>X</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\partial (X)$</annotation>\\n </semantics></math> is <i>tight</i> if every perfect matching of the graph contains exactly one edge in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∂</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>X</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\partial (X)$</annotation>\\n </semantics></math>. A matching covered bipartite graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is a <i>brace</i> if, for every tight cut <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>∂</mo>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>X</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\partial (X)$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>|</mo>\\n \\n <mi>X</mi>\\n \\n <mo>|</mo>\\n \\n <mo>=</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mrow>\\n <annotation> $|X|=1$</annotation>\\n </semantics></math> or <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>|</mo>\\n \\n <mover>\\n <mi>X</mi>\\n \\n <mo>¯</mo>\\n </mover>\\n \\n <mo>|</mo>\\n \\n <mo>=</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mrow>\\n <annotation> $|\\\\bar{X}|=1$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mover>\\n <mi>X</mi>\\n \\n <mo>¯</mo>\\n </mover>\\n \\n <mo>=</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>⧹</mo>\\n \\n <mi>X</mi>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\bar{X}=V(G)\\\\setminus X$</annotation>\\n </semantics></math>. Braces play an important role in Lovász's tight cut decomposition of matching covered graphs. The <i>bicontraction</i> of a vertex <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n </mrow>\\n <annotation> $v$</annotation>\\n </semantics></math> of degree two in a graph, with precisely two neighbours <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>v</mi>\\n \\n <mn>1</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> ${v}_{1}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>v</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> ${v}_{2}$</annotation>\\n </semantics></math>, consists of shrinking the set <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mrow>\\n <mo>{</mo>\\n \\n <mrow>\\n <msub>\\n <mi>v</mi>\\n \\n <mn>1</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <mi>v</mi>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>v</mi>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\{{v}_{1},v,{v}_{2}\\\\}$</annotation>\\n </semantics></math> to a single vertex. The <i>retract</i> of a matching covered graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is the graph obtained from <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> by repeatedly the bicontractions of vertices of degree two. An edge <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>e</mi>\\n </mrow>\\n </mrow>\\n <annotation> $e$</annotation>\\n </semantics></math> of a brace <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> with at least six vertices is <i>thin</i> if the retract of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n \\n <mo>−</mo>\\n \\n <mi>e</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G-e$</annotation>\\n </semantics></math> is a brace. McCuaig showed that every brace of order at least six has a thin edge. In a brace <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> of order six or more, Carvalho, Lucchesi and Murty proved that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> has two thin edges, and conjectured that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> contains two nonadjacent thin edges. Further, they made a stronger conjecture: There exists a positive constant <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n </mrow>\\n <annotation> $c$</annotation>\\n </semantics></math> such that every brace <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> has <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>c</mi>\\n \\n <mo>|</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>|</mo>\\n </mrow>\\n </mrow>\\n <annotation> $c|V(G)|$</annotation>\\n </semantics></math> thin edges. By showing that, in every cubic brace <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> of order at least six, there exists a matching <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>M</mi>\\n </mrow>\\n </mrow>\\n <annotation> $M$</annotation>\\n </semantics></math> of size at least <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>|</mo>\\n \\n <mi>V</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>|</mo>\\n \\n <mo>∕</mo>\\n \\n <mn>10</mn>\\n </mrow>\\n </mrow>\\n <annotation> $|V(G)|\\\\unicode{x02215}10$</annotation>\\n </semantics></math> such that every edge in <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>M</mi>\\n </mrow>\\n </mrow>\\n <annotation> $M$</annotation>\\n </semantics></math> is thin, we prove that the above two conjectures hold for cubic braces.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"107 3\",\"pages\":\"642-675\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23150\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23150","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用