{"title":"趋同措施和新兴模型:人机信任问卷的元分析","authors":"Yosef Razin, K. Feigh","doi":"10.1145/3677614","DOIUrl":null,"url":null,"abstract":"Trust is crucial for technological acceptance, continued usage, and teamwork. However, human-robot trust, and human-machine trust more generally, suffer from terminological disagreement and construct proliferation. By comparing, mapping, and analyzing well-constructed trust survey instruments, this work uncovers a consensus structure of trust in human-machine interaction. To do so, we identify the most frequently cited and best-validated human-machine and human-robot trust questionnaires as well as the best-established factors that form the dimensions and antecedents of such trust. To reduce both confusion and construct proliferation, we provide a detailed mapping of terminology between questionnaires. Furthermore, we perform a meta-analysis of the regression models which emerged from the experiments that employed multi-factorial survey instruments. Based on this meta-analysis, we provide the most complete, experimentally validated model of human-machine and human-robot trust to date. This convergent model establishes an integrated framework for future research. It determines the current boundaries of trust measurement and where further investigation and validation are necessary. We close by discussing how to choose an appropriate trust survey instrument and how to design for trust. By identifying the internal workings of trust, a more complete basis for measuring trust is developed that is widely applicable.","PeriodicalId":36515,"journal":{"name":"ACM Transactions on Human-Robot Interaction","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Converging Measures and an Emergent Model: A Meta-Analysis of Human-Machine Trust Questionnaires\",\"authors\":\"Yosef Razin, K. Feigh\",\"doi\":\"10.1145/3677614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trust is crucial for technological acceptance, continued usage, and teamwork. However, human-robot trust, and human-machine trust more generally, suffer from terminological disagreement and construct proliferation. By comparing, mapping, and analyzing well-constructed trust survey instruments, this work uncovers a consensus structure of trust in human-machine interaction. To do so, we identify the most frequently cited and best-validated human-machine and human-robot trust questionnaires as well as the best-established factors that form the dimensions and antecedents of such trust. To reduce both confusion and construct proliferation, we provide a detailed mapping of terminology between questionnaires. Furthermore, we perform a meta-analysis of the regression models which emerged from the experiments that employed multi-factorial survey instruments. Based on this meta-analysis, we provide the most complete, experimentally validated model of human-machine and human-robot trust to date. This convergent model establishes an integrated framework for future research. It determines the current boundaries of trust measurement and where further investigation and validation are necessary. We close by discussing how to choose an appropriate trust survey instrument and how to design for trust. By identifying the internal workings of trust, a more complete basis for measuring trust is developed that is widely applicable.\",\"PeriodicalId\":36515,\"journal\":{\"name\":\"ACM Transactions on Human-Robot Interaction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Human-Robot Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3677614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Human-Robot Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3677614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Converging Measures and an Emergent Model: A Meta-Analysis of Human-Machine Trust Questionnaires
Trust is crucial for technological acceptance, continued usage, and teamwork. However, human-robot trust, and human-machine trust more generally, suffer from terminological disagreement and construct proliferation. By comparing, mapping, and analyzing well-constructed trust survey instruments, this work uncovers a consensus structure of trust in human-machine interaction. To do so, we identify the most frequently cited and best-validated human-machine and human-robot trust questionnaires as well as the best-established factors that form the dimensions and antecedents of such trust. To reduce both confusion and construct proliferation, we provide a detailed mapping of terminology between questionnaires. Furthermore, we perform a meta-analysis of the regression models which emerged from the experiments that employed multi-factorial survey instruments. Based on this meta-analysis, we provide the most complete, experimentally validated model of human-machine and human-robot trust to date. This convergent model establishes an integrated framework for future research. It determines the current boundaries of trust measurement and where further investigation and validation are necessary. We close by discussing how to choose an appropriate trust survey instrument and how to design for trust. By identifying the internal workings of trust, a more complete basis for measuring trust is developed that is widely applicable.
期刊介绍:
ACM Transactions on Human-Robot Interaction (THRI) is a prestigious Gold Open Access journal that aspires to lead the field of human-robot interaction as a top-tier, peer-reviewed, interdisciplinary publication. The journal prioritizes articles that significantly contribute to the current state of the art, enhance overall knowledge, have a broad appeal, and are accessible to a diverse audience. Submissions are expected to meet a high scholarly standard, and authors are encouraged to ensure their research is well-presented, advancing the understanding of human-robot interaction, adding cutting-edge or general insights to the field, or challenging current perspectives in this research domain.
THRI warmly invites well-crafted paper submissions from a variety of disciplines, encompassing robotics, computer science, engineering, design, and the behavioral and social sciences. The scholarly articles published in THRI may cover a range of topics such as the nature of human interactions with robots and robotic technologies, methods to enhance or enable novel forms of interaction, and the societal or organizational impacts of these interactions. The editorial team is also keen on receiving proposals for special issues that focus on specific technical challenges or that apply human-robot interaction research to further areas like social computing, consumer behavior, health, and education.