{"title":"两相三元流体中液滴生长和沉积的大势相场模拟","authors":"W. Verdier, A. Cartalade, M. Plapp","doi":"10.1088/1361-651x/ad627e","DOIUrl":null,"url":null,"abstract":"\n A methodology is built to model and simulate the dynamics of domain coarsening of a two-phase ternary liquid with an arbitrary phase diagram. High numerical performance is obtained through the use of the phase field-method for interface capturing, a lattice Boltzmann method numerical scheme for all the model equations, and a portable, parallel simulation code running on multiple GPUs. The model is benchmarked against an analytic solution for a ternary diffusion couple. It also reproduces the well-known power law for droplet coarsening during Ostwald ripening without fluid flow. Large-scale simulations with flow illustrate the effects of momentum transport and buoyancy, as well as droplet coalescence and sedimentation.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grand-potential phase field simulations of droplet growth and sedimentation in a two-phase ternary fluid\",\"authors\":\"W. Verdier, A. Cartalade, M. Plapp\",\"doi\":\"10.1088/1361-651x/ad627e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A methodology is built to model and simulate the dynamics of domain coarsening of a two-phase ternary liquid with an arbitrary phase diagram. High numerical performance is obtained through the use of the phase field-method for interface capturing, a lattice Boltzmann method numerical scheme for all the model equations, and a portable, parallel simulation code running on multiple GPUs. The model is benchmarked against an analytic solution for a ternary diffusion couple. It also reproduces the well-known power law for droplet coarsening during Ostwald ripening without fluid flow. Large-scale simulations with flow illustrate the effects of momentum transport and buoyancy, as well as droplet coalescence and sedimentation.\",\"PeriodicalId\":18648,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-651x/ad627e\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad627e","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Grand-potential phase field simulations of droplet growth and sedimentation in a two-phase ternary fluid
A methodology is built to model and simulate the dynamics of domain coarsening of a two-phase ternary liquid with an arbitrary phase diagram. High numerical performance is obtained through the use of the phase field-method for interface capturing, a lattice Boltzmann method numerical scheme for all the model equations, and a portable, parallel simulation code running on multiple GPUs. The model is benchmarked against an analytic solution for a ternary diffusion couple. It also reproduces the well-known power law for droplet coarsening during Ostwald ripening without fluid flow. Large-scale simulations with flow illustrate the effects of momentum transport and buoyancy, as well as droplet coalescence and sedimentation.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.