Fernando Leporace-Jiménez, Isabel Portillo-Hernandez, Justino Jiménez-Almonacid, Ignacio Zubillaga Rodriguez, María Mejía-Nieto, Pablo Caballero Pedrero, G. S. Aniceto
{"title":"重新审视 PD-L1 过表达在口腔鳞状细胞癌患者预后和临床病理特征中的作用","authors":"Fernando Leporace-Jiménez, Isabel Portillo-Hernandez, Justino Jiménez-Almonacid, Ignacio Zubillaga Rodriguez, María Mejía-Nieto, Pablo Caballero Pedrero, G. S. Aniceto","doi":"10.3390/onco4030011","DOIUrl":null,"url":null,"abstract":"Background: PD1 and its ligand PD-L1 are related to prognosis in many solid tumors; however, their role in oral squamous cell carcinoma (OSCC) remains unclear. Methods: A retrospective monocentric study including all patients with OSCC diagnosed and treated between January 2020 and May 2022 was performed. PD-L1 expression was assessed per a combined positive score (CPS), considering a CPS of > or equal to 1 as positive (1–20 indicating “low expression” and ≥20 indicating “high”). A descriptive analysis of the patient cohort and tumors was performed, including tumor size, stage, lymph node involvement, recurrence, and survival. Results: In total, 65 patients (65 tumors) were analyzed. A total of 66.15% of the tumors were in advanced stages (III-IV), of which 97.67% expressed PD-L1+, compared with 71.42% in the early stages (I–II). T4 tumors expressed PD-L1 in 100% of cases, compared with 54% in T1 tumors. A total of 50.79% of the tumors showed lymph node involvement (pN+), with 100% of the pN+ showing PD-L1+. The prevalence of pN+ was 59.38% vs. 40.63% for high vs. low PD-L1 expression, respectively. Patients’ follow-ups ranged from 2 to 34.5 months. No significant difference was seen between overall survival (OS) and PD-L1 +/− (CPS ≥ 1 vs. CPS < 1) or high (CPS ≥ 20) and low (CPS < 20) PD-L1 expression (p < 0.97 and 0.64, respectively). Conclusions: The method used to measure PD-L1 (a laboratory test with Dako 22C3 anti-PD-L1 primary antibodies) was reliable and accurate, with a correlation coefficient between PD-L1 expression in the biopsy and the surgical piece of 0.83 (p < 0.0001). A CPS of ≥1 was observed in large tumors (p < 0.001) and was correlated with that of lymph node metastases (p < 0.004). Further analysis of PD-L1 expression in OSCC and studies to determine its relevance in tumor biology and prognosis is needed.","PeriodicalId":74339,"journal":{"name":"Onco","volume":"65 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the Role of PD-L1 Overexpression in Prognosis and Clinicopathological Features in Patients with Oral Squamous Cell Carcinoma\",\"authors\":\"Fernando Leporace-Jiménez, Isabel Portillo-Hernandez, Justino Jiménez-Almonacid, Ignacio Zubillaga Rodriguez, María Mejía-Nieto, Pablo Caballero Pedrero, G. S. Aniceto\",\"doi\":\"10.3390/onco4030011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: PD1 and its ligand PD-L1 are related to prognosis in many solid tumors; however, their role in oral squamous cell carcinoma (OSCC) remains unclear. Methods: A retrospective monocentric study including all patients with OSCC diagnosed and treated between January 2020 and May 2022 was performed. PD-L1 expression was assessed per a combined positive score (CPS), considering a CPS of > or equal to 1 as positive (1–20 indicating “low expression” and ≥20 indicating “high”). A descriptive analysis of the patient cohort and tumors was performed, including tumor size, stage, lymph node involvement, recurrence, and survival. Results: In total, 65 patients (65 tumors) were analyzed. A total of 66.15% of the tumors were in advanced stages (III-IV), of which 97.67% expressed PD-L1+, compared with 71.42% in the early stages (I–II). T4 tumors expressed PD-L1 in 100% of cases, compared with 54% in T1 tumors. A total of 50.79% of the tumors showed lymph node involvement (pN+), with 100% of the pN+ showing PD-L1+. The prevalence of pN+ was 59.38% vs. 40.63% for high vs. low PD-L1 expression, respectively. Patients’ follow-ups ranged from 2 to 34.5 months. No significant difference was seen between overall survival (OS) and PD-L1 +/− (CPS ≥ 1 vs. CPS < 1) or high (CPS ≥ 20) and low (CPS < 20) PD-L1 expression (p < 0.97 and 0.64, respectively). Conclusions: The method used to measure PD-L1 (a laboratory test with Dako 22C3 anti-PD-L1 primary antibodies) was reliable and accurate, with a correlation coefficient between PD-L1 expression in the biopsy and the surgical piece of 0.83 (p < 0.0001). A CPS of ≥1 was observed in large tumors (p < 0.001) and was correlated with that of lymph node metastases (p < 0.004). Further analysis of PD-L1 expression in OSCC and studies to determine its relevance in tumor biology and prognosis is needed.\",\"PeriodicalId\":74339,\"journal\":{\"name\":\"Onco\",\"volume\":\"65 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Onco\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/onco4030011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Onco","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/onco4030011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Revisiting the Role of PD-L1 Overexpression in Prognosis and Clinicopathological Features in Patients with Oral Squamous Cell Carcinoma
Background: PD1 and its ligand PD-L1 are related to prognosis in many solid tumors; however, their role in oral squamous cell carcinoma (OSCC) remains unclear. Methods: A retrospective monocentric study including all patients with OSCC diagnosed and treated between January 2020 and May 2022 was performed. PD-L1 expression was assessed per a combined positive score (CPS), considering a CPS of > or equal to 1 as positive (1–20 indicating “low expression” and ≥20 indicating “high”). A descriptive analysis of the patient cohort and tumors was performed, including tumor size, stage, lymph node involvement, recurrence, and survival. Results: In total, 65 patients (65 tumors) were analyzed. A total of 66.15% of the tumors were in advanced stages (III-IV), of which 97.67% expressed PD-L1+, compared with 71.42% in the early stages (I–II). T4 tumors expressed PD-L1 in 100% of cases, compared with 54% in T1 tumors. A total of 50.79% of the tumors showed lymph node involvement (pN+), with 100% of the pN+ showing PD-L1+. The prevalence of pN+ was 59.38% vs. 40.63% for high vs. low PD-L1 expression, respectively. Patients’ follow-ups ranged from 2 to 34.5 months. No significant difference was seen between overall survival (OS) and PD-L1 +/− (CPS ≥ 1 vs. CPS < 1) or high (CPS ≥ 20) and low (CPS < 20) PD-L1 expression (p < 0.97 and 0.64, respectively). Conclusions: The method used to measure PD-L1 (a laboratory test with Dako 22C3 anti-PD-L1 primary antibodies) was reliable and accurate, with a correlation coefficient between PD-L1 expression in the biopsy and the surgical piece of 0.83 (p < 0.0001). A CPS of ≥1 was observed in large tumors (p < 0.001) and was correlated with that of lymph node metastases (p < 0.004). Further analysis of PD-L1 expression in OSCC and studies to determine its relevance in tumor biology and prognosis is needed.