R. Magallanes-Quintanar, C. E. Galván-Tejada, J. Galván-Tejada, Hamurabi Gamboa-Rosales, S. J. Méndez-Gallegos, Antonio García-Domínguez
{"title":"墨西哥中北部标准化降水指数预测的自动机器学习模型","authors":"R. Magallanes-Quintanar, C. E. Galván-Tejada, J. Galván-Tejada, Hamurabi Gamboa-Rosales, S. J. Méndez-Gallegos, Antonio García-Domínguez","doi":"10.3390/cli12070102","DOIUrl":null,"url":null,"abstract":"Certain impacts of climate change could potentially be linked to alterations in rainfall patterns, including shifts in rainfall intensity or drought occurrences. Hence, predicting droughts can provide valuable assistance in mitigating the detrimental consequences associated with water scarcity, particularly in agricultural areas or densely populated urban regions. Employing predictive models to calculate drought indices can be a useful method for the effective characterization of drought conditions. This study applied an Auto-Machine-Learning approach to deploy Artificial Neural Network models, aiming to predict the Standardized Precipitation Index in four regions of Zacatecas, Mexico. Climatological time-series data spanning from 1979 to 2020 were utilized as predictive variables. The best models were found using performance metrics that yielded a Mean Squared Error, Mean Absolute Error, and Coefficient of Determination ranging from 0.0296 to 0.0388, 0.1214 to 0.1355, and 0.9342 to 0.9584, respectively, for the regions under study. As a result, the Auto-Machine-Learning approach successfully developed and tested Artificial Neural Network models that exhibited notable predictive capabilities when estimating the monthly Standardized Precipitation Index within the study region.","PeriodicalId":37615,"journal":{"name":"Climate","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auto-Machine-Learning Models for Standardized Precipitation Index Prediction in North–Central Mexico\",\"authors\":\"R. Magallanes-Quintanar, C. E. Galván-Tejada, J. Galván-Tejada, Hamurabi Gamboa-Rosales, S. J. Méndez-Gallegos, Antonio García-Domínguez\",\"doi\":\"10.3390/cli12070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Certain impacts of climate change could potentially be linked to alterations in rainfall patterns, including shifts in rainfall intensity or drought occurrences. Hence, predicting droughts can provide valuable assistance in mitigating the detrimental consequences associated with water scarcity, particularly in agricultural areas or densely populated urban regions. Employing predictive models to calculate drought indices can be a useful method for the effective characterization of drought conditions. This study applied an Auto-Machine-Learning approach to deploy Artificial Neural Network models, aiming to predict the Standardized Precipitation Index in four regions of Zacatecas, Mexico. Climatological time-series data spanning from 1979 to 2020 were utilized as predictive variables. The best models were found using performance metrics that yielded a Mean Squared Error, Mean Absolute Error, and Coefficient of Determination ranging from 0.0296 to 0.0388, 0.1214 to 0.1355, and 0.9342 to 0.9584, respectively, for the regions under study. As a result, the Auto-Machine-Learning approach successfully developed and tested Artificial Neural Network models that exhibited notable predictive capabilities when estimating the monthly Standardized Precipitation Index within the study region.\",\"PeriodicalId\":37615,\"journal\":{\"name\":\"Climate\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cli12070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cli12070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Auto-Machine-Learning Models for Standardized Precipitation Index Prediction in North–Central Mexico
Certain impacts of climate change could potentially be linked to alterations in rainfall patterns, including shifts in rainfall intensity or drought occurrences. Hence, predicting droughts can provide valuable assistance in mitigating the detrimental consequences associated with water scarcity, particularly in agricultural areas or densely populated urban regions. Employing predictive models to calculate drought indices can be a useful method for the effective characterization of drought conditions. This study applied an Auto-Machine-Learning approach to deploy Artificial Neural Network models, aiming to predict the Standardized Precipitation Index in four regions of Zacatecas, Mexico. Climatological time-series data spanning from 1979 to 2020 were utilized as predictive variables. The best models were found using performance metrics that yielded a Mean Squared Error, Mean Absolute Error, and Coefficient of Determination ranging from 0.0296 to 0.0388, 0.1214 to 0.1355, and 0.9342 to 0.9584, respectively, for the regions under study. As a result, the Auto-Machine-Learning approach successfully developed and tested Artificial Neural Network models that exhibited notable predictive capabilities when estimating the monthly Standardized Precipitation Index within the study region.
ClimateEarth and Planetary Sciences-Atmospheric Science
CiteScore
5.50
自引率
5.40%
发文量
172
审稿时长
11 weeks
期刊介绍:
Climate is an independent, international and multi-disciplinary open access journal focusing on climate processes of the earth, covering all scales and involving modelling and observation methods. The scope of Climate includes: Global climate Regional climate Urban climate Multiscale climate Polar climate Tropical climate Climate downscaling Climate process and sensitivity studies Climate dynamics Climate variability (Interseasonal, interannual to decadal) Feedbacks between local, regional, and global climate change Anthropogenic climate change Climate and monsoon Cloud and precipitation predictions Past, present, and projected climate change Hydroclimate.