Nikola Kotorčević, S. Milenković, F. Živić, Branka Jordović, Dragan Adamović, Petar Todorović, N. Grujovic
{"title":"材料挤压三维打印用于净水器的微孔铜基结构","authors":"Nikola Kotorčević, S. Milenković, F. Živić, Branka Jordović, Dragan Adamović, Petar Todorović, N. Grujovic","doi":"10.3390/machines12070470","DOIUrl":null,"url":null,"abstract":"This paper presents 3D-printed micro-porous structures made of a Cu/PLA composite by using material extrusion 3D printing technology. A metallic filament made of 80% copper and 20% polylactic acid (PLA) was used for the 3D printing of the porous samples. We varied printing parameters, aiming to obtain a micro-range porosity that can serve as a water-filtering structure. The produced samples were analyzed from the aspects of dimensional accuracy, level of porosity, and capacity for water flow. Several samples were fabricated, and the water flow was exhibited for the samples with an approximate 100 µm size of the interconnected open porosity. The application of material extrusion 3D printing, as a cost-effective, widely available technology for producing micro-range porous structures, is still challenging, especially for interconnected predefined porosity with metal-based filaments. Our research showed that the optimization of 3D printing parameters can enable the fabrication of copper-based micro-porous structures, but further research is still needed.","PeriodicalId":509264,"journal":{"name":"Machines","volume":"55 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Material Extrusion 3D Printing of Micro-Porous Copper-Based Structure for Water Filters\",\"authors\":\"Nikola Kotorčević, S. Milenković, F. Živić, Branka Jordović, Dragan Adamović, Petar Todorović, N. Grujovic\",\"doi\":\"10.3390/machines12070470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents 3D-printed micro-porous structures made of a Cu/PLA composite by using material extrusion 3D printing technology. A metallic filament made of 80% copper and 20% polylactic acid (PLA) was used for the 3D printing of the porous samples. We varied printing parameters, aiming to obtain a micro-range porosity that can serve as a water-filtering structure. The produced samples were analyzed from the aspects of dimensional accuracy, level of porosity, and capacity for water flow. Several samples were fabricated, and the water flow was exhibited for the samples with an approximate 100 µm size of the interconnected open porosity. The application of material extrusion 3D printing, as a cost-effective, widely available technology for producing micro-range porous structures, is still challenging, especially for interconnected predefined porosity with metal-based filaments. Our research showed that the optimization of 3D printing parameters can enable the fabrication of copper-based micro-porous structures, but further research is still needed.\",\"PeriodicalId\":509264,\"journal\":{\"name\":\"Machines\",\"volume\":\"55 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/machines12070470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/machines12070470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Material Extrusion 3D Printing of Micro-Porous Copper-Based Structure for Water Filters
This paper presents 3D-printed micro-porous structures made of a Cu/PLA composite by using material extrusion 3D printing technology. A metallic filament made of 80% copper and 20% polylactic acid (PLA) was used for the 3D printing of the porous samples. We varied printing parameters, aiming to obtain a micro-range porosity that can serve as a water-filtering structure. The produced samples were analyzed from the aspects of dimensional accuracy, level of porosity, and capacity for water flow. Several samples were fabricated, and the water flow was exhibited for the samples with an approximate 100 µm size of the interconnected open porosity. The application of material extrusion 3D printing, as a cost-effective, widely available technology for producing micro-range porous structures, is still challenging, especially for interconnected predefined porosity with metal-based filaments. Our research showed that the optimization of 3D printing parameters can enable the fabrication of copper-based micro-porous structures, but further research is still needed.