开发中性语言资源以实施自动转换分析器

Max Silberztein, Cristina Mota, Anabela Barreiro
{"title":"开发中性语言资源以实施自动转换分析器","authors":"Max Silberztein, Cristina Mota, Anabela Barreiro","doi":"10.12688/openreseurope.17990.1","DOIUrl":null,"url":null,"abstract":"Bakground The linguistic pursuit of describing natural languages stands as a commendable scientific endeavor, regardless of immediate software application prospects. It transcends mere documentation of possible sentences to establish connections between sentences derived from transformations. Methods Amid the dominance of Large Language Models (LLMs) in research and technology, which offer intriguing advancements in text generation, the approaches presented in this article confront challenges like opacity, limited human intervention, and adaptation difficulties inherent in LLMs. The alternative or complementary approaches highlighted here focus on the theoretical and methodological challenges of describing linguistic transformations and are firmly rooted in the field of linguistics, the science of language. We propose two solutions to address the problem of language transformations: (i) the procedural approach, which involves representing each transformation with a transducer, and (ii) the declarative method, which entails capturing all potential transformations in a single neutral grammar. Results These approaches simplify the generation of complex sentences from elementary ones and vice versa. Conclusion This work has benefited from research exchanges within the Multi3Generation COST Action (CA18231), and the resources produced can contribute to enhancing any language generation system.","PeriodicalId":74359,"journal":{"name":"Open research Europe","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing neutral linguistic resources for the implementation of an automatic transformational analyzer\",\"authors\":\"Max Silberztein, Cristina Mota, Anabela Barreiro\",\"doi\":\"10.12688/openreseurope.17990.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bakground The linguistic pursuit of describing natural languages stands as a commendable scientific endeavor, regardless of immediate software application prospects. It transcends mere documentation of possible sentences to establish connections between sentences derived from transformations. Methods Amid the dominance of Large Language Models (LLMs) in research and technology, which offer intriguing advancements in text generation, the approaches presented in this article confront challenges like opacity, limited human intervention, and adaptation difficulties inherent in LLMs. The alternative or complementary approaches highlighted here focus on the theoretical and methodological challenges of describing linguistic transformations and are firmly rooted in the field of linguistics, the science of language. We propose two solutions to address the problem of language transformations: (i) the procedural approach, which involves representing each transformation with a transducer, and (ii) the declarative method, which entails capturing all potential transformations in a single neutral grammar. Results These approaches simplify the generation of complex sentences from elementary ones and vice versa. Conclusion This work has benefited from research exchanges within the Multi3Generation COST Action (CA18231), and the resources produced can contribute to enhancing any language generation system.\",\"PeriodicalId\":74359,\"journal\":{\"name\":\"Open research Europe\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open research Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12688/openreseurope.17990.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open research Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/openreseurope.17990.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景 描述自然语言的语言学追求是一项值得称道的科学努力,而不考虑直接的软件应用前景。它超越了仅仅记录可能的句子的范畴,而是要建立由转换而来的句子之间的联系。方法 大语言模型(LLM)在研究和技术领域占据主导地位,为文本生成提供了引人入胜的进步,但本文介绍的方法却面临着 LLM 固有的不透明性、有限的人工干预和适应困难等挑战。本文强调的替代或补充方法侧重于描述语言转换的理论和方法挑战,并牢牢扎根于语言学这一语言科学领域。我们提出了两种解决方案来解决语言转换问题:(i) 程序性方法,即用转换器来表示每种转换;(ii) 声明性方法,即在一个中性语法中捕捉所有潜在的转换。结果 这些方法简化了从基本句子生成复杂句子的过程,反之亦然。结论 这项工作得益于多重生成 COST 行动(CA18231)中的研究交流,所产生的资源有助于增强任何语言生成系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing neutral linguistic resources for the implementation of an automatic transformational analyzer
Bakground The linguistic pursuit of describing natural languages stands as a commendable scientific endeavor, regardless of immediate software application prospects. It transcends mere documentation of possible sentences to establish connections between sentences derived from transformations. Methods Amid the dominance of Large Language Models (LLMs) in research and technology, which offer intriguing advancements in text generation, the approaches presented in this article confront challenges like opacity, limited human intervention, and adaptation difficulties inherent in LLMs. The alternative or complementary approaches highlighted here focus on the theoretical and methodological challenges of describing linguistic transformations and are firmly rooted in the field of linguistics, the science of language. We propose two solutions to address the problem of language transformations: (i) the procedural approach, which involves representing each transformation with a transducer, and (ii) the declarative method, which entails capturing all potential transformations in a single neutral grammar. Results These approaches simplify the generation of complex sentences from elementary ones and vice versa. Conclusion This work has benefited from research exchanges within the Multi3Generation COST Action (CA18231), and the resources produced can contribute to enhancing any language generation system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
Initial development and validation of item banks to measure problematic hypersexuality. Co-designing ab initio electronic structure methods on a RISC-V vector architecture. Optimization of the autolysis of rainbow trout viscera for amino acid release using response surface methodology. Gestational Diabetes Mellitus: Unveiling Maternal Health Dynamics from Pregnancy Through Postpartum Perspectives. Development of flip-chip technology for the optical drive of superconducting circuits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1