{"title":"利用整体设备效率指标和石川图进行故障模式和影响分析,分析贴模机的效率","authors":"Rex Revian A. Guste, K. A. Mariñas, A. K. Ong","doi":"10.3390/machines12070467","DOIUrl":null,"url":null,"abstract":"The semiconductor manufacturing sector has contributed to the advancement of technical development in the sphere of industrial applications, but one crucial factor that cannot be overlooked is the evaluation of a machine’s state. Despite the presence of advanced equipment, data on their performances are not properly reviewed, resulting in a variety of concerns such as high rejection rates, lower production output, manufacturing overhead cost issues, and customer complaints. This study’s goal is to evaluate the performance of die attach machines made by a prominent subcontractor semiconductor manufacturing business in the Philippines; our findings will provide other organizations with important insights into the appropriate diagnosis of productivity difficulties via productivity metrics analyses. The study focuses on a specific type of die attach machine, with machine 10 showing to be the most troublesome, with an overall equipment effectiveness (OEE) rating of 43.57%. The Failure Mode and Effects Analysis (FMEA) identified that the primary reasons for the issue were idling, small stoppages, and breakdown loss resulting from loosened screws in the work holder. The risk priority number (RPN) was calculated to be 392, with a severity level of 7, an occurrence level of 7, and a detection level of 8. The findings provide new insight into the methods that should be included in the production process to boost efficiency and better suit the expectations of customers in a highly competitive market.","PeriodicalId":509264,"journal":{"name":"Machines","volume":"80 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiency Analysis of Die Attach Machines Using Overall Equipment Effectiveness Metrics and Failure Mode and Effects Analysis with an Ishikawa Diagram\",\"authors\":\"Rex Revian A. Guste, K. A. Mariñas, A. K. Ong\",\"doi\":\"10.3390/machines12070467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The semiconductor manufacturing sector has contributed to the advancement of technical development in the sphere of industrial applications, but one crucial factor that cannot be overlooked is the evaluation of a machine’s state. Despite the presence of advanced equipment, data on their performances are not properly reviewed, resulting in a variety of concerns such as high rejection rates, lower production output, manufacturing overhead cost issues, and customer complaints. This study’s goal is to evaluate the performance of die attach machines made by a prominent subcontractor semiconductor manufacturing business in the Philippines; our findings will provide other organizations with important insights into the appropriate diagnosis of productivity difficulties via productivity metrics analyses. The study focuses on a specific type of die attach machine, with machine 10 showing to be the most troublesome, with an overall equipment effectiveness (OEE) rating of 43.57%. The Failure Mode and Effects Analysis (FMEA) identified that the primary reasons for the issue were idling, small stoppages, and breakdown loss resulting from loosened screws in the work holder. The risk priority number (RPN) was calculated to be 392, with a severity level of 7, an occurrence level of 7, and a detection level of 8. The findings provide new insight into the methods that should be included in the production process to boost efficiency and better suit the expectations of customers in a highly competitive market.\",\"PeriodicalId\":509264,\"journal\":{\"name\":\"Machines\",\"volume\":\"80 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/machines12070467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/machines12070467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficiency Analysis of Die Attach Machines Using Overall Equipment Effectiveness Metrics and Failure Mode and Effects Analysis with an Ishikawa Diagram
The semiconductor manufacturing sector has contributed to the advancement of technical development in the sphere of industrial applications, but one crucial factor that cannot be overlooked is the evaluation of a machine’s state. Despite the presence of advanced equipment, data on their performances are not properly reviewed, resulting in a variety of concerns such as high rejection rates, lower production output, manufacturing overhead cost issues, and customer complaints. This study’s goal is to evaluate the performance of die attach machines made by a prominent subcontractor semiconductor manufacturing business in the Philippines; our findings will provide other organizations with important insights into the appropriate diagnosis of productivity difficulties via productivity metrics analyses. The study focuses on a specific type of die attach machine, with machine 10 showing to be the most troublesome, with an overall equipment effectiveness (OEE) rating of 43.57%. The Failure Mode and Effects Analysis (FMEA) identified that the primary reasons for the issue were idling, small stoppages, and breakdown loss resulting from loosened screws in the work holder. The risk priority number (RPN) was calculated to be 392, with a severity level of 7, an occurrence level of 7, and a detection level of 8. The findings provide new insight into the methods that should be included in the production process to boost efficiency and better suit the expectations of customers in a highly competitive market.