{"title":"用于自动驾驶汽车预测性维护的机器学习算法","authors":"Chirag Vinalbhai Shah","doi":"10.18535/ijecs/v13i01.4786","DOIUrl":null,"url":null,"abstract":"The complexity and hazards of autonomous vehicle systems have posed a significant challenge in predictive maintenance. Since the incompetence of autonomous vehicle system software and hardware could lead to life-threatening crashes, maintenance should be performed regularly to protect human safety. For automotive systems, predicting future failures and taking actions in advance to maintain system reliability and safety is very crucial in large-scale product design. This paper will explore several machine learning algorithms including regression techniques, classification techniques, ensemble techniques, clustering techniques, and deep learning techniques used for system maintenance need assessment in autonomous vehicles. Experimental results indicate that predictive maintenance can be greatly helpful for autonomous vehicles either in improving system design or mitigating the risk of threats.","PeriodicalId":231371,"journal":{"name":"International Journal of Engineering and Computer Science","volume":"61 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Algorithms for Predictive Maintenance in Autonomous Vehicles\",\"authors\":\"Chirag Vinalbhai Shah\",\"doi\":\"10.18535/ijecs/v13i01.4786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complexity and hazards of autonomous vehicle systems have posed a significant challenge in predictive maintenance. Since the incompetence of autonomous vehicle system software and hardware could lead to life-threatening crashes, maintenance should be performed regularly to protect human safety. For automotive systems, predicting future failures and taking actions in advance to maintain system reliability and safety is very crucial in large-scale product design. This paper will explore several machine learning algorithms including regression techniques, classification techniques, ensemble techniques, clustering techniques, and deep learning techniques used for system maintenance need assessment in autonomous vehicles. Experimental results indicate that predictive maintenance can be greatly helpful for autonomous vehicles either in improving system design or mitigating the risk of threats.\",\"PeriodicalId\":231371,\"journal\":{\"name\":\"International Journal of Engineering and Computer Science\",\"volume\":\"61 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18535/ijecs/v13i01.4786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18535/ijecs/v13i01.4786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning Algorithms for Predictive Maintenance in Autonomous Vehicles
The complexity and hazards of autonomous vehicle systems have posed a significant challenge in predictive maintenance. Since the incompetence of autonomous vehicle system software and hardware could lead to life-threatening crashes, maintenance should be performed regularly to protect human safety. For automotive systems, predicting future failures and taking actions in advance to maintain system reliability and safety is very crucial in large-scale product design. This paper will explore several machine learning algorithms including regression techniques, classification techniques, ensemble techniques, clustering techniques, and deep learning techniques used for system maintenance need assessment in autonomous vehicles. Experimental results indicate that predictive maintenance can be greatly helpful for autonomous vehicles either in improving system design or mitigating the risk of threats.