Junjie Li, Wenjing Chen, Chenghua Xu, Xiaoxiao Hou, Xiaodong Hu
{"title":"Cu-Mn/Al2O3 催化剂对提高甲苯燃烧性能的结构影响:多元醇的分子结构和水热处理","authors":"Junjie Li, Wenjing Chen, Chenghua Xu, Xiaoxiao Hou, Xiaodong Hu","doi":"10.3390/catal14070443","DOIUrl":null,"url":null,"abstract":"This study presents a series of Cu-Mn/Al2O3 catalysts prepared by the polyol method to improve the toluene combustion process. The catalytic activity evaluation results showed that the different polyols have a great influence on catalyst activity, in which the catalyst prepared with glycerol through a hydrothermal reaction at 90 °C displayed the highest catalytic activity. The lowest T90 and T50 values could be achieved by CMA-GL-90 with 260 and 237 °C, respectively. Moreover, the XRD and BET results showed that the hydrothermal treatment was more favorable with Cu-Mn crystal formation, and an abundance of mesopores remained in all catalysts with a high specific surface area from 94.37 to 123.03 m2·g−1. The morphology analysis results by SEM and TEM indicated that employing glycerol coupled with hydrothermal treatment at 90 °C could enhance the formation of CuMn2O4 spinel. The toluene catalytic combustion mechanism of Cu-Mn/Al2O3 catalysts was discussed based on XPS and H2-TPR, and a high atomic ratio of Mn3+ could be obtained with 51.03%, and the ratio of Oads/Olatt also increased to 2.85 in CMA-GL-90. The increase in Mn3+ species and oxygen vacancies on the surface of catalysts exhibited excellent activity and stability for toluene combustion. These findings offer valuable insights for optimizing the design and application of Cu-Mn/Al2O3 catalysts in addressing the catalytic oxidation reactions of organic volatile compounds.","PeriodicalId":505577,"journal":{"name":"Catalysts","volume":"53 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Effect of Cu-Mn/Al2O3 Catalysts on Enhancing Toluene Combustion Performance: Molecular Structure of Polyols and Hydrothermal Treatment\",\"authors\":\"Junjie Li, Wenjing Chen, Chenghua Xu, Xiaoxiao Hou, Xiaodong Hu\",\"doi\":\"10.3390/catal14070443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a series of Cu-Mn/Al2O3 catalysts prepared by the polyol method to improve the toluene combustion process. The catalytic activity evaluation results showed that the different polyols have a great influence on catalyst activity, in which the catalyst prepared with glycerol through a hydrothermal reaction at 90 °C displayed the highest catalytic activity. The lowest T90 and T50 values could be achieved by CMA-GL-90 with 260 and 237 °C, respectively. Moreover, the XRD and BET results showed that the hydrothermal treatment was more favorable with Cu-Mn crystal formation, and an abundance of mesopores remained in all catalysts with a high specific surface area from 94.37 to 123.03 m2·g−1. The morphology analysis results by SEM and TEM indicated that employing glycerol coupled with hydrothermal treatment at 90 °C could enhance the formation of CuMn2O4 spinel. The toluene catalytic combustion mechanism of Cu-Mn/Al2O3 catalysts was discussed based on XPS and H2-TPR, and a high atomic ratio of Mn3+ could be obtained with 51.03%, and the ratio of Oads/Olatt also increased to 2.85 in CMA-GL-90. The increase in Mn3+ species and oxygen vacancies on the surface of catalysts exhibited excellent activity and stability for toluene combustion. These findings offer valuable insights for optimizing the design and application of Cu-Mn/Al2O3 catalysts in addressing the catalytic oxidation reactions of organic volatile compounds.\",\"PeriodicalId\":505577,\"journal\":{\"name\":\"Catalysts\",\"volume\":\"53 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/catal14070443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/catal14070443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structural Effect of Cu-Mn/Al2O3 Catalysts on Enhancing Toluene Combustion Performance: Molecular Structure of Polyols and Hydrothermal Treatment
This study presents a series of Cu-Mn/Al2O3 catalysts prepared by the polyol method to improve the toluene combustion process. The catalytic activity evaluation results showed that the different polyols have a great influence on catalyst activity, in which the catalyst prepared with glycerol through a hydrothermal reaction at 90 °C displayed the highest catalytic activity. The lowest T90 and T50 values could be achieved by CMA-GL-90 with 260 and 237 °C, respectively. Moreover, the XRD and BET results showed that the hydrothermal treatment was more favorable with Cu-Mn crystal formation, and an abundance of mesopores remained in all catalysts with a high specific surface area from 94.37 to 123.03 m2·g−1. The morphology analysis results by SEM and TEM indicated that employing glycerol coupled with hydrothermal treatment at 90 °C could enhance the formation of CuMn2O4 spinel. The toluene catalytic combustion mechanism of Cu-Mn/Al2O3 catalysts was discussed based on XPS and H2-TPR, and a high atomic ratio of Mn3+ could be obtained with 51.03%, and the ratio of Oads/Olatt also increased to 2.85 in CMA-GL-90. The increase in Mn3+ species and oxygen vacancies on the surface of catalysts exhibited excellent activity and stability for toluene combustion. These findings offer valuable insights for optimizing the design and application of Cu-Mn/Al2O3 catalysts in addressing the catalytic oxidation reactions of organic volatile compounds.