在不确定的交通场景中,利用合作意向和执行器约束实现自动驾驶汽车的安全轨迹规划

IF 2.2 3区 工程技术 Q2 ENGINEERING, MECHANICAL Actuators Pub Date : 2024-07-10 DOI:10.3390/act13070260
Yuquan Zhu, Juntong Lv, Qingchao Liu
{"title":"在不确定的交通场景中,利用合作意向和执行器约束实现自动驾驶汽车的安全轨迹规划","authors":"Yuquan Zhu, Juntong Lv, Qingchao Liu","doi":"10.3390/act13070260","DOIUrl":null,"url":null,"abstract":"This study explores the integration of dynamic vehicle trajectories, vehicle safety factors, static traffic environments, and actuator constraints to improve cooperative intent modeling for autonomous vehicles (AVs) navigating uncertain traffic scenarios. Existing models often focus solely on interactions between dynamic trajectories, limiting their ability to fully interpret the intentions of surrounding vehicles. To address this limitation, we present a more comprehensive approach using the Cooperative Intent Multi-Layer Graph Neural Network (CMGNN) model. The CMGNN analyzes not only the dynamic trajectories but also the lane position relationships, vehicle angle changes, and actuator constraints and performs group interaction analysis. This richer information allows the CMGNN to more accurately capture the cooperative intent and better understand the surrounding vehicle behavior. This study investigated the impact of the CMGNN in the Carla simulator on surrounding vehicle trajectory prediction and AV safe trajectory planning. An innovative mechanism for dynamic trajectory risk assessment is introduced, which takes into account the constraints of the actuators when evaluating trajectory planning metrics. The results show that incorporating cooperative intent and considering the actuator limitations enhanced the CMGNN’s safety and driving efficiency in uncertain scenarios, significantly reducing the probability of AVs colliding. This is achieved as the model dynamically adapts its driving strategy based on the real-time traffic conditions, the perceived intentions of the surrounding vehicles, and the physical constraints of the vehicle actuators.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Cooperative Intent and Actuator Constraints for Safe Trajectory Planning of Autonomous Vehicles in Uncertain Traffic Scenarios\",\"authors\":\"Yuquan Zhu, Juntong Lv, Qingchao Liu\",\"doi\":\"10.3390/act13070260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the integration of dynamic vehicle trajectories, vehicle safety factors, static traffic environments, and actuator constraints to improve cooperative intent modeling for autonomous vehicles (AVs) navigating uncertain traffic scenarios. Existing models often focus solely on interactions between dynamic trajectories, limiting their ability to fully interpret the intentions of surrounding vehicles. To address this limitation, we present a more comprehensive approach using the Cooperative Intent Multi-Layer Graph Neural Network (CMGNN) model. The CMGNN analyzes not only the dynamic trajectories but also the lane position relationships, vehicle angle changes, and actuator constraints and performs group interaction analysis. This richer information allows the CMGNN to more accurately capture the cooperative intent and better understand the surrounding vehicle behavior. This study investigated the impact of the CMGNN in the Carla simulator on surrounding vehicle trajectory prediction and AV safe trajectory planning. An innovative mechanism for dynamic trajectory risk assessment is introduced, which takes into account the constraints of the actuators when evaluating trajectory planning metrics. The results show that incorporating cooperative intent and considering the actuator limitations enhanced the CMGNN’s safety and driving efficiency in uncertain scenarios, significantly reducing the probability of AVs colliding. This is achieved as the model dynamically adapts its driving strategy based on the real-time traffic conditions, the perceived intentions of the surrounding vehicles, and the physical constraints of the vehicle actuators.\",\"PeriodicalId\":48584,\"journal\":{\"name\":\"Actuators\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Actuators\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/act13070260\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actuators","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/act13070260","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了如何整合动态车辆轨迹、车辆安全因素、静态交通环境和执行器约束条件,以改进自动驾驶车辆(AV)在不确定交通场景中导航的合作意向建模。现有模型通常只关注动态轨迹之间的相互作用,从而限制了其全面解读周围车辆意图的能力。为了解决这一局限,我们提出了一种使用合作意向多层图神经网络(CMGNN)模型的更全面的方法。CMGNN 不仅能分析动态轨迹,还能分析车道位置关系、车辆角度变化和致动器约束,并进行群体交互分析。这些更丰富的信息使 CMGNN 能够更准确地捕捉合作意图,更好地理解周围车辆的行为。本研究调查了 Carla 模拟器中的 CMGNN 对周围车辆轨迹预测和 AV 安全轨迹规划的影响。研究引入了一种创新的动态轨迹风险评估机制,该机制在评估轨迹规划指标时考虑了执行器的约束条件。结果表明,在不确定的情况下,结合合作意向并考虑执行器限制可提高 CMGNN 的安全性和驾驶效率,显著降低自动驾驶汽车发生碰撞的概率。这是由于模型根据实时交通状况、周围车辆的感知意图以及车辆执行器的物理限制动态调整其驾驶策略而实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging Cooperative Intent and Actuator Constraints for Safe Trajectory Planning of Autonomous Vehicles in Uncertain Traffic Scenarios
This study explores the integration of dynamic vehicle trajectories, vehicle safety factors, static traffic environments, and actuator constraints to improve cooperative intent modeling for autonomous vehicles (AVs) navigating uncertain traffic scenarios. Existing models often focus solely on interactions between dynamic trajectories, limiting their ability to fully interpret the intentions of surrounding vehicles. To address this limitation, we present a more comprehensive approach using the Cooperative Intent Multi-Layer Graph Neural Network (CMGNN) model. The CMGNN analyzes not only the dynamic trajectories but also the lane position relationships, vehicle angle changes, and actuator constraints and performs group interaction analysis. This richer information allows the CMGNN to more accurately capture the cooperative intent and better understand the surrounding vehicle behavior. This study investigated the impact of the CMGNN in the Carla simulator on surrounding vehicle trajectory prediction and AV safe trajectory planning. An innovative mechanism for dynamic trajectory risk assessment is introduced, which takes into account the constraints of the actuators when evaluating trajectory planning metrics. The results show that incorporating cooperative intent and considering the actuator limitations enhanced the CMGNN’s safety and driving efficiency in uncertain scenarios, significantly reducing the probability of AVs colliding. This is achieved as the model dynamically adapts its driving strategy based on the real-time traffic conditions, the perceived intentions of the surrounding vehicles, and the physical constraints of the vehicle actuators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Actuators
Actuators Mathematics-Control and Optimization
CiteScore
3.90
自引率
15.40%
发文量
315
审稿时长
11 weeks
期刊介绍: Actuators (ISSN 2076-0825; CODEN: ACTUC3) is an international open access journal on the science and technology of actuators and control systems published quarterly online by MDPI.
期刊最新文献
Fast UOIS: Unseen Object Instance Segmentation with Adaptive Clustering for Industrial Robotic Grasping A Robust Hꝏ-Based State Feedback Control of Permanent Magnet Synchronous Motor Drives Using Adaptive Fuzzy Sliding Mode Observers Global Stabilization of Control Systems with Input Saturation and Multiple Input Delays A New Variable-Stiffness Body Weight Support System Driven by Two Active Closed-Loop Controlled Drives Optimization Design of a Polyimide High-Pressure Mixer Based on SSA-CNN-LSTM-WOA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1