Yuping Dai, Dan Huang, Ye He, Yun Xiang, Shunxiang Li
{"title":"使用 Heracles Neo 超快气相电子鼻区分铁皮石斛茎干和五个铁皮石斛品种的探索性研究","authors":"Yuping Dai, Dan Huang, Ye He, Yun Xiang, Shunxiang Li","doi":"10.3390/separations11070211","DOIUrl":null,"url":null,"abstract":"Dendrobium stem is a valuable food with medicinal and edible properties. Due to its high medicinal value and price, closely related Dendrobium varieties are often sold as imitations on the market. Therefore, there is an urgent need to develop new methods that can quickly identify Dendrobium stem and its closely related species. The Heracles Neo ultra-fast gas phase electronic nose was used in this study to determine and analyze the composition and contents of volatile organic compounds (VOCs) in Dendrobium stem and samples of five other species closely related to it. A total of 20 VOCs were identified, and a fingerprint map of the VOCs was constructed. Principal component analysis (PCA), Euclidean distance, and other methods were used to comprehensively process and analyze the obtained VOC information. The AroChemBase database was also used for qualitative analysis of the compounds. The results showed that there are significant differences in the odor fingerprint spectra of Dendrobium stem and the five other closely related species. The main types of compounds in Dendrobium stem and its five closely related species were organic esters, aldehydes, ketones, and olefins. Among them, 3-methylbutanal and n-butanol were characteristic compounds of the Dendrobium stem sample, while the VOCs acetonitrile and trometamol were present in the five related Dendrobium species samples. The Heracles Neo ultra-fast gas phase electronic nose can quickly and accurately identify Dendrobium stem and its five closely related species. It can also be used for the quality evaluation of Dendrobium stem, providing a theoretical reference for reducing the phenomenon of medicinal confusion in the Dendrobium stem market.","PeriodicalId":21833,"journal":{"name":"Separations","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploratory Study on Distinguishing Dendrobium Stem and Five Species of Dendrobium Using Heracles Neo Ultra-Fast Gas Phase Electronic Nose\",\"authors\":\"Yuping Dai, Dan Huang, Ye He, Yun Xiang, Shunxiang Li\",\"doi\":\"10.3390/separations11070211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dendrobium stem is a valuable food with medicinal and edible properties. Due to its high medicinal value and price, closely related Dendrobium varieties are often sold as imitations on the market. Therefore, there is an urgent need to develop new methods that can quickly identify Dendrobium stem and its closely related species. The Heracles Neo ultra-fast gas phase electronic nose was used in this study to determine and analyze the composition and contents of volatile organic compounds (VOCs) in Dendrobium stem and samples of five other species closely related to it. A total of 20 VOCs were identified, and a fingerprint map of the VOCs was constructed. Principal component analysis (PCA), Euclidean distance, and other methods were used to comprehensively process and analyze the obtained VOC information. The AroChemBase database was also used for qualitative analysis of the compounds. The results showed that there are significant differences in the odor fingerprint spectra of Dendrobium stem and the five other closely related species. The main types of compounds in Dendrobium stem and its five closely related species were organic esters, aldehydes, ketones, and olefins. Among them, 3-methylbutanal and n-butanol were characteristic compounds of the Dendrobium stem sample, while the VOCs acetonitrile and trometamol were present in the five related Dendrobium species samples. The Heracles Neo ultra-fast gas phase electronic nose can quickly and accurately identify Dendrobium stem and its five closely related species. It can also be used for the quality evaluation of Dendrobium stem, providing a theoretical reference for reducing the phenomenon of medicinal confusion in the Dendrobium stem market.\",\"PeriodicalId\":21833,\"journal\":{\"name\":\"Separations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/separations11070211\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations11070211","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Exploratory Study on Distinguishing Dendrobium Stem and Five Species of Dendrobium Using Heracles Neo Ultra-Fast Gas Phase Electronic Nose
Dendrobium stem is a valuable food with medicinal and edible properties. Due to its high medicinal value and price, closely related Dendrobium varieties are often sold as imitations on the market. Therefore, there is an urgent need to develop new methods that can quickly identify Dendrobium stem and its closely related species. The Heracles Neo ultra-fast gas phase electronic nose was used in this study to determine and analyze the composition and contents of volatile organic compounds (VOCs) in Dendrobium stem and samples of five other species closely related to it. A total of 20 VOCs were identified, and a fingerprint map of the VOCs was constructed. Principal component analysis (PCA), Euclidean distance, and other methods were used to comprehensively process and analyze the obtained VOC information. The AroChemBase database was also used for qualitative analysis of the compounds. The results showed that there are significant differences in the odor fingerprint spectra of Dendrobium stem and the five other closely related species. The main types of compounds in Dendrobium stem and its five closely related species were organic esters, aldehydes, ketones, and olefins. Among them, 3-methylbutanal and n-butanol were characteristic compounds of the Dendrobium stem sample, while the VOCs acetonitrile and trometamol were present in the five related Dendrobium species samples. The Heracles Neo ultra-fast gas phase electronic nose can quickly and accurately identify Dendrobium stem and its five closely related species. It can also be used for the quality evaluation of Dendrobium stem, providing a theoretical reference for reducing the phenomenon of medicinal confusion in the Dendrobium stem market.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization