在室温下使用化学烧结银纳米颗粒的导电油墨,用于可印刷的柔性电子应用

Bethel Faith Y. Rezaga, M. D. Balela
{"title":"在室温下使用化学烧结银纳米颗粒的导电油墨,用于可印刷的柔性电子应用","authors":"Bethel Faith Y. Rezaga, M. D. Balela","doi":"10.4028/p-daaz5z","DOIUrl":null,"url":null,"abstract":"Conductive inks composed of chemically sintered silver (Ag) nanoparticles were prepared. The enlargement of particle size was accompanied by the increase in conductivity of the Ag nanoparticle ink. The resistance of the as-prepared and sintered Ag nanoparticles printed on different substrates was measured, and results showed that the formulated conductive ink works best on glossy paper. This is due to the compatibility of the conductive ink with the porosity and surface roughness of the glossy paper. The conductive ink formulation was also used as printer ink, and results showed a decrease in resistance as the printing pass was increased.","PeriodicalId":17714,"journal":{"name":"Key Engineering Materials","volume":"27 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conductive Inks with Chemically Sintered Silver Nanoparticles at Room Temperature for Printable, Flexible Electronic Applications\",\"authors\":\"Bethel Faith Y. Rezaga, M. D. Balela\",\"doi\":\"10.4028/p-daaz5z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conductive inks composed of chemically sintered silver (Ag) nanoparticles were prepared. The enlargement of particle size was accompanied by the increase in conductivity of the Ag nanoparticle ink. The resistance of the as-prepared and sintered Ag nanoparticles printed on different substrates was measured, and results showed that the formulated conductive ink works best on glossy paper. This is due to the compatibility of the conductive ink with the porosity and surface roughness of the glossy paper. The conductive ink formulation was also used as printer ink, and results showed a decrease in resistance as the printing pass was increased.\",\"PeriodicalId\":17714,\"journal\":{\"name\":\"Key Engineering Materials\",\"volume\":\"27 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Key Engineering Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-daaz5z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Key Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-daaz5z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

制备了由化学烧结银(Ag)纳米粒子组成的导电油墨。随着颗粒尺寸的增大,银纳米颗粒油墨的导电性也随之增加。结果表明,配制的导电油墨在光面纸上的效果最好。这是因为导电油墨与光面纸的多孔性和表面粗糙度相容。导电油墨配方还被用作打印机油墨,结果表明,随着打印次数的增加,电阻也在下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conductive Inks with Chemically Sintered Silver Nanoparticles at Room Temperature for Printable, Flexible Electronic Applications
Conductive inks composed of chemically sintered silver (Ag) nanoparticles were prepared. The enlargement of particle size was accompanied by the increase in conductivity of the Ag nanoparticle ink. The resistance of the as-prepared and sintered Ag nanoparticles printed on different substrates was measured, and results showed that the formulated conductive ink works best on glossy paper. This is due to the compatibility of the conductive ink with the porosity and surface roughness of the glossy paper. The conductive ink formulation was also used as printer ink, and results showed a decrease in resistance as the printing pass was increased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Nanomaterials as Next-Gen Corrosion Inhibitors: A Comprehensive Review for Ceramic Wastewater Treatment Green Composite Concrete Incorporating with Non-Biodegradable Wastes Incorporation of Silicone Mold Residues Influence on Acoustic Properties of Subfloor Mortars Development of Hygrothermal Reference Year for Hygrothermal Simulation of Hygroscopic Building Construction for Guangzhou Experimental Study on Fracture Properties of Self-Compacting Concrete Containing Red Mud Waste and Different Steel Fiber Types
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1