通过溶解度驱动的双相系统优化促进 I-/I3- ${\mathrm{I}}_{3}^{-}$ 液态热电池的发展

EcoEnergy Pub Date : 2024-07-10 DOI:10.1002/ece2.52
Xiangyu Liu, Taiyu Wang, Haobin Ye, Wenjing Nan, Mingyu Chen, Jiale Fang, Feng Ru Fan
{"title":"通过溶解度驱动的双相系统优化促进 I-/I3- ${\\mathrm{I}}_{3}^{-}$ 液态热电池的发展","authors":"Xiangyu Liu,&nbsp;Taiyu Wang,&nbsp;Haobin Ye,&nbsp;Wenjing Nan,&nbsp;Mingyu Chen,&nbsp;Jiale Fang,&nbsp;Feng Ru Fan","doi":"10.1002/ece2.52","DOIUrl":null,"url":null,"abstract":"<p>Liquid state thermocells (LTCs) offer a promising approach for harvesting low-grade heat. In exploring the impact of concentration difference (Δ<i>C</i><sub>r</sub>) on the Seebeck coefficient (<i>Se</i>) in LTCs, previous studies mainly focused on two strategies: host–guest complexation and thermosensitive crystallization, which involved adding polymers or cation additives for targeted interaction with the redox couple. However, these methods face challenges in scalability and long-term application due to the selection and costs of additives, along with the stability of recognition. This study pioneers a unique strategy that utilizes solubility differences in an organic-aqueous biphasic system. We investigated an electrolyte consisting of an I<sup>−</sup>/<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>I</mi>\n <mn>3</mn>\n <mo>−</mo>\n </msubsup>\n </mrow>\n <annotation> ${\\mathrm{I}}_{3}^{-}$</annotation>\n </semantics></math> redox couple, an organic-aqueous solvent, and ammonium sulfate. This biphasic system enables an enriched concentration of <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>I</mi>\n <mn>3</mn>\n <mo>−</mo>\n </msubsup>\n </mrow>\n <annotation> ${\\mathrm{I}}_{3}^{-}$</annotation>\n </semantics></math> in the upper phase, thereby enhancing the reduction reaction on the hot side. Our approach achieves a <i>Se</i> of 1.8 mV K<sup>−1</sup> and a maximum output of 120 μW m<sup>−2</sup> K<sup>−2</sup>, representing a substantial improvement, over threefold compared to traditional single-phase systems. Therefore, this cost-effective strategy using a biphasic system establishes a novel pathway for advancing performance of LTCs and presents a promising approach toward achieving carbon neutrality.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.52","citationCount":"0","resultStr":"{\"title\":\"Boosting I–/\\n \\n \\n \\n I\\n 3\\n −\\n \\n \\n ${\\\\mathrm{I}}_{3}^{-}$\\n liquid state thermocells through solubility-driven biphasic system optimization\",\"authors\":\"Xiangyu Liu,&nbsp;Taiyu Wang,&nbsp;Haobin Ye,&nbsp;Wenjing Nan,&nbsp;Mingyu Chen,&nbsp;Jiale Fang,&nbsp;Feng Ru Fan\",\"doi\":\"10.1002/ece2.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Liquid state thermocells (LTCs) offer a promising approach for harvesting low-grade heat. In exploring the impact of concentration difference (Δ<i>C</i><sub>r</sub>) on the Seebeck coefficient (<i>Se</i>) in LTCs, previous studies mainly focused on two strategies: host–guest complexation and thermosensitive crystallization, which involved adding polymers or cation additives for targeted interaction with the redox couple. However, these methods face challenges in scalability and long-term application due to the selection and costs of additives, along with the stability of recognition. This study pioneers a unique strategy that utilizes solubility differences in an organic-aqueous biphasic system. We investigated an electrolyte consisting of an I<sup>−</sup>/<span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>I</mi>\\n <mn>3</mn>\\n <mo>−</mo>\\n </msubsup>\\n </mrow>\\n <annotation> ${\\\\mathrm{I}}_{3}^{-}$</annotation>\\n </semantics></math> redox couple, an organic-aqueous solvent, and ammonium sulfate. This biphasic system enables an enriched concentration of <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>I</mi>\\n <mn>3</mn>\\n <mo>−</mo>\\n </msubsup>\\n </mrow>\\n <annotation> ${\\\\mathrm{I}}_{3}^{-}$</annotation>\\n </semantics></math> in the upper phase, thereby enhancing the reduction reaction on the hot side. Our approach achieves a <i>Se</i> of 1.8 mV K<sup>−1</sup> and a maximum output of 120 μW m<sup>−2</sup> K<sup>−2</sup>, representing a substantial improvement, over threefold compared to traditional single-phase systems. Therefore, this cost-effective strategy using a biphasic system establishes a novel pathway for advancing performance of LTCs and presents a promising approach toward achieving carbon neutrality.</p>\",\"PeriodicalId\":100387,\"journal\":{\"name\":\"EcoEnergy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.52\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoEnergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ece2.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoEnergy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece2.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

液态热电偶(LTC)为收集低品位热量提供了一种前景广阔的方法。在探索浓度差(ΔCr)对液态热电池中塞贝克系数(Se)的影响时,以往的研究主要集中在两种策略上:宿主-宿主复合和热敏结晶,其中涉及添加聚合物或阳离子添加剂,以实现与氧化还原偶的定向交互。然而,由于添加剂的选择和成本以及识别的稳定性,这些方法在可扩展性和长期应用方面面临挑战。本研究开创了一种独特的策略,利用有机-水双相体系中的溶解度差异。我们研究了一种由 I-/ 氧化还原偶、有机水溶剂和硫酸铵组成的电解质。这种双相体系能使上相中的氧化还原剂富集,从而增强热侧的还原反应。与传统的单相系统相比,我们的方法实现了 1.8 mV K-1 的 Se 值和 120 μW m-2 K-2 的最大输出,这代表了超过三倍的大幅改进。因此,这种使用双相系统的高性价比策略为提高长效半导体制冷系统的性能开辟了一条新途径,并为实现碳中和提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Boosting I–/ I 3 − ${\mathrm{I}}_{3}^{-}$ liquid state thermocells through solubility-driven biphasic system optimization

Liquid state thermocells (LTCs) offer a promising approach for harvesting low-grade heat. In exploring the impact of concentration difference (ΔCr) on the Seebeck coefficient (Se) in LTCs, previous studies mainly focused on two strategies: host–guest complexation and thermosensitive crystallization, which involved adding polymers or cation additives for targeted interaction with the redox couple. However, these methods face challenges in scalability and long-term application due to the selection and costs of additives, along with the stability of recognition. This study pioneers a unique strategy that utilizes solubility differences in an organic-aqueous biphasic system. We investigated an electrolyte consisting of an I/ I 3 ${\mathrm{I}}_{3}^{-}$ redox couple, an organic-aqueous solvent, and ammonium sulfate. This biphasic system enables an enriched concentration of I 3 ${\mathrm{I}}_{3}^{-}$ in the upper phase, thereby enhancing the reduction reaction on the hot side. Our approach achieves a Se of 1.8 mV K−1 and a maximum output of 120 μW m−2 K−2, representing a substantial improvement, over threefold compared to traditional single-phase systems. Therefore, this cost-effective strategy using a biphasic system establishes a novel pathway for advancing performance of LTCs and presents a promising approach toward achieving carbon neutrality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Modification engineering of “polymer-in-salt” electrolytes toward high-stability solid-state lithium batteries Copper nanoclusters derived from copper phthalocyanine as real active sites for CO2 electroreduction: Exploring size dependency on selectivity - A mini review Fabrication of self-supported catalysts via electrodeposition for proton exchange membrane water electrolysis: Emphasizing on the porous transport layers Electrode materials for calcium batteries: Future directions and perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1