研究热处理温度控制对耐磨钢强化机理和磨损行为的影响

Nanomaterials Pub Date : 2024-07-09 DOI:10.3390/nano14141171
Xiaoyu Zhu, J. Lin, Shaoning Jiang, Aijun Cao, Yuan Yao, Yu Sun, Sensen Li, Zhanfeng Zhang
{"title":"研究热处理温度控制对耐磨钢强化机理和磨损行为的影响","authors":"Xiaoyu Zhu, J. Lin, Shaoning Jiang, Aijun Cao, Yuan Yao, Yu Sun, Sensen Li, Zhanfeng Zhang","doi":"10.3390/nano14141171","DOIUrl":null,"url":null,"abstract":"To improve the wear resistance of the materials used for blades in engineering machinery, this study focused on the microstructural characteristics, mechanical properties, and wear behavior of HB500 grade wear-resistant steel developed using an optimized heat treatment system. To improve the temperature uniformity of the heat treatment furnace, the method of cyclic heating was used to heat the components. Carefully designing the quenching equipment, such as using a cross-shaped press, was employed to enhance the quenching effect and reduce the deformation of the steel plates. The crystal orientation analysis revealed a uniform and fine-grained microstructure, primarily characterized by plate-type tempered martensite, which indicated a good hardenability. The microstructure observations showed that the width of martensite is approximately 200 nm, with a significant presence of dislocations and carbides. Tensile tests and multi-temperature gradient impact tests indicated superior mechanical properties compared to similar grade wear-resistant steels, including a Rockwell hardness of 53, tensile strength of 1610 MPa, yield strength of 1404 MPa, and total elongation around 12.7%. The results of friction and wear experiments indicate that the wear rate decreases as the load increases from 100 N to 300 N, demonstrating an excellent wear resistance under a large load. Observations of the worn surfaces indicated that the wear mainly involved adhesive wear, fatigue wear, and oxidative wear. The properties’ improvements were attributed to microstructure refinement and precipitation strengthening. This study indicates that designing a heat treatment system to control temperature uniformity and stability is feasible.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"5 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Effects on the Strengthening Mechanism and Wear Behavior of Wear-Resistant Steel of Temperature Controlling in Heat Treatment\",\"authors\":\"Xiaoyu Zhu, J. Lin, Shaoning Jiang, Aijun Cao, Yuan Yao, Yu Sun, Sensen Li, Zhanfeng Zhang\",\"doi\":\"10.3390/nano14141171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the wear resistance of the materials used for blades in engineering machinery, this study focused on the microstructural characteristics, mechanical properties, and wear behavior of HB500 grade wear-resistant steel developed using an optimized heat treatment system. To improve the temperature uniformity of the heat treatment furnace, the method of cyclic heating was used to heat the components. Carefully designing the quenching equipment, such as using a cross-shaped press, was employed to enhance the quenching effect and reduce the deformation of the steel plates. The crystal orientation analysis revealed a uniform and fine-grained microstructure, primarily characterized by plate-type tempered martensite, which indicated a good hardenability. The microstructure observations showed that the width of martensite is approximately 200 nm, with a significant presence of dislocations and carbides. Tensile tests and multi-temperature gradient impact tests indicated superior mechanical properties compared to similar grade wear-resistant steels, including a Rockwell hardness of 53, tensile strength of 1610 MPa, yield strength of 1404 MPa, and total elongation around 12.7%. The results of friction and wear experiments indicate that the wear rate decreases as the load increases from 100 N to 300 N, demonstrating an excellent wear resistance under a large load. Observations of the worn surfaces indicated that the wear mainly involved adhesive wear, fatigue wear, and oxidative wear. The properties’ improvements were attributed to microstructure refinement and precipitation strengthening. This study indicates that designing a heat treatment system to control temperature uniformity and stability is feasible.\",\"PeriodicalId\":508599,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"5 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14141171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nano14141171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为提高工程机械叶片材料的耐磨性,本研究重点关注了采用优化热处理系统开发的 HB500 级耐磨钢的微观结构特征、机械性能和磨损行为。为了提高热处理炉的温度均匀性,采用了循环加热的方法对部件进行加热。对淬火设备进行了精心设计,如使用十字形压力机,以提高淬火效果并减少钢板变形。晶体取向分析表明,钢板的微观结构均匀且颗粒细小,主要特征是板型回火马氏体,这表明钢板具有良好的淬透性。显微结构观察结果表明,马氏体的宽度约为 200 nm,其中存在大量位错和碳化物。拉伸试验和多温度梯度冲击试验表明,与同类耐磨钢相比,该耐磨钢具有更优越的机械性能,包括洛氏硬度 53、抗拉强度 1610 兆帕、屈服强度 1404 兆帕和约 12.7% 的总伸长率。摩擦和磨损实验结果表明,当载荷从 100 N 增加到 300 N 时,磨损率降低,这表明在大载荷下具有出色的耐磨性。对磨损表面的观察表明,磨损主要涉及粘着磨损、疲劳磨损和氧化磨损。性能的改善归因于微观结构的细化和沉淀强化。这项研究表明,设计一个热处理系统来控制温度的均匀性和稳定性是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of the Effects on the Strengthening Mechanism and Wear Behavior of Wear-Resistant Steel of Temperature Controlling in Heat Treatment
To improve the wear resistance of the materials used for blades in engineering machinery, this study focused on the microstructural characteristics, mechanical properties, and wear behavior of HB500 grade wear-resistant steel developed using an optimized heat treatment system. To improve the temperature uniformity of the heat treatment furnace, the method of cyclic heating was used to heat the components. Carefully designing the quenching equipment, such as using a cross-shaped press, was employed to enhance the quenching effect and reduce the deformation of the steel plates. The crystal orientation analysis revealed a uniform and fine-grained microstructure, primarily characterized by plate-type tempered martensite, which indicated a good hardenability. The microstructure observations showed that the width of martensite is approximately 200 nm, with a significant presence of dislocations and carbides. Tensile tests and multi-temperature gradient impact tests indicated superior mechanical properties compared to similar grade wear-resistant steels, including a Rockwell hardness of 53, tensile strength of 1610 MPa, yield strength of 1404 MPa, and total elongation around 12.7%. The results of friction and wear experiments indicate that the wear rate decreases as the load increases from 100 N to 300 N, demonstrating an excellent wear resistance under a large load. Observations of the worn surfaces indicated that the wear mainly involved adhesive wear, fatigue wear, and oxidative wear. The properties’ improvements were attributed to microstructure refinement and precipitation strengthening. This study indicates that designing a heat treatment system to control temperature uniformity and stability is feasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancing Silver Bismuth Sulfide Quantum Dots for Practical Solar Cell Applications Anisotropic SmFe10V2 Bulk Magnets with Enhanced Coercivity via Ball Milling Process A Novel Fabrication of Hematite Nanoparticles via Recycling of Titanium Slag by Pyrite Reduction Technology Plant-Derived Extracellular Vesicles as a Novel Frontier in Cancer Therapeutics Biological Nano-Agrochemicals for Crop Production as an Emerging Way to Address Heat and Associated Stresses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1